首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The governing equilibrium equations for strain gradient elastic thin shallow shells are derived, considering nonlinear strains and linear constitutive strain gradient elastic relations. Adopting Kirchhoff’s theory of thin shallow structures, the equilibrium equations, along with the boundary conditions, are formulated through a variational procedure. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin plates. Those terms are missing from the existing strain gradient shallow thin shell theories. Those terms highly increase the stiffness of the structures. When the curvature of the shallow shell becomes zero, the governing equilibrium for the plates is derived.  相似文献   

2.
The governing equation of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane constant forces on bending, is explicitly derived. This is accomplished by appropriately combining the equations of flexural motion in terms of moments, shear and in-plane forces, the moment–stress relations and the stress–strain equations of a simple strain gradient elastic theory with just one constant (the internal length squared), in addition to the two classical elastic moduli. The resulting partial differential equation in terms of the lateral deflection of the plate is of the sixth order instead of the fourth, which is the case for the classical elastic case. Three boundary value problems dealing with static, stability and dynamic analysis of a rectangular simply supported all-around gradient elastic flexural plate are solved analytically. Non-classical boundary conditions, in additional to the classical ones, have to be utilized. An assessment of the effect of the gradient coefficient on the static or dynamic response of the plate, its buckling load and natural frequencies is also made by comparing the gradient type of solutions against the classical ones.  相似文献   

3.
Bending of strain gradient elastic thin beams is studied adopting Bernoulli-Euler principle. Simple linear strain gradient elastic theory with surface energy is employed. The governing beam equations with its boundary conditions are derived through a variational method. It turns out that new terms are introduced, indicating the importance of the cross-section area in bending of thin beams. Those terms are missing from the existing strain gradient beam theories. Those terms increase highly the stiffness of the thin beam. The buckling problem of the thin beams is also discussed.  相似文献   

4.
In the analysis of the bifurcation of thin orthotropic plates, the nonlinear terms associated with the third-order elastic constants are included in the stress-strain relation and large strain theory is used for the prebifurcation state. It is illustrated in an example that the second-order theory may affect considerably the buckling load (and mode).  相似文献   

5.
Non-Euclidean plates are a subset of the class of elastic bodies having no stress-free configuration. Such bodies exhibit residual stress when relaxed from all external constraints, and may assume complicated equilibrium shapes even in the absence of external forces. In this work we present a mathematical framework for such bodies in terms of a covariant theory of linear elasticity, valid for large displacements. We propose the concept of non-Euclidean plates to approximate many naturally formed thin elastic structures. We derive a thin plate theory, which is a generalization of existing linear plate theories, valid for large displacements but small strains, and arbitrary intrinsic geometry. We study a particular example of a hemispherical plate. We show the occurrence of a spontaneous buckling transition from a stretching dominated configuration to bending dominated configurations, under variation of the plate thickness.  相似文献   

6.
The bending analysis of a thin rectangular plate is carried out in the framework of the second gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived in a variational approach. The governing partial differential equation can be simplified to the first gradient or classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply supported boundary conditions are derived from the variational equations. As an example, static, stability and free vibration analyses of a simply supported rectangular plate are presented analytically.  相似文献   

7.
A number of hypotheses were formulated using the properties of an asymptotic solution of boundary-value problems of the three-dimensional micropolar (moment asymmetric) theory of elasticity for areas with one geometrical parameter being substantially smaller than the other two (plates and shells). A general theory of bending deformation of micropolar elastic thin plates with independent fields of displacements and rotations is constructed. In the constructed model of a micropolar elastic plate, transverse shear strains are fully taken into account. A problem of determining the stress-strain state in bending deformation of micropolar elastic thin rectangular plates is considered. The numerical analysis reveals that plates made of a micropolar elastic material have high strength and stiffness characteristics.  相似文献   

8.
The validity and the range of applicability of the classical plate theory (CPT) and the first-order shear deformation plate theory, also called Mindlin plate theory (MPT), in comparison with three-dimensional (3-D) p-Ritz solution are presented for freely vibrating circular plates on the elastic foundation with different boundary conditions. In order to achieve this purpose, a study of the 3-D elasticity solution is carried out to determine the free vibration frequencies of clamped, simply supported and free circular plates resting on an elastic foundation. The Pasternak model with adding a shear layer to the Winkler model is used for describing the elastic foundation. In addition to being employed the p-Ritz algorithm, the analysis is based on the linear, small strain and 3-D elasticity theory. In this analysis method, a set of orthogonal polynomial series in a cylindrical polar coordinate system is used to arrive eigenvalue equation yielding the natural frequencies for the circular plates. The accuracy of these results is verified by appropriate convergence studies and checked with the available literature and the MPT. Furthermore, the effect of the foundation stiffness parameters, thickness-radius ratio, and different boundary conditions on the ill-conditioning of the mass matrix as well as on the vibration behavior of the circular plates is investigated. Afterwards, the validity and the range of applicability of the results obtained on the basis of the CPT and MPT for a thin and moderately thick circular plate with different values of the foundation stiffness parameters are graphically presented through comparing them with those obtained by the present 3-D p-Ritz solution. Finally, the phenomenon of mode shape switching is investigated in graphical forms for a wide range of the Winkler foundation stiffness parameters.  相似文献   

9.
In this paper, based on Lagrange–Germanian theory of elastic thin plates, applying the method in Hamiltonian state space, the elastic waves and vibrations when the boundary of the two lateral sides of the strip plate are free of traction are investigated, and the process of analysis and solution are proposed. The existence of all kinds of vibration modes and wave propagation modes is also analyzed. By using eigenfunction expansion method, the dispersion relations of waveguide modes in the strip plate are derived, and the comparisons with the dispersion relations directly obtained by the classical theory of thin plates are also presented. At last, the results are analyzed and discussed.  相似文献   

10.
从弹性薄板理论出发,将箱型结构分为六块相互约束的简支薄板。每一块板在板内承受任意局部荷载,在四边承受待定的分布弯矩。通过板与板的边界转角协调分析,求解出每块板四边所受的分布弯矩,从而得到任意荷载作用下箱型结构的解析解。  相似文献   

11.
The primary objective of this paper is to formulate the governing equations of shear deformable beams and plates that account for moderate rotations and microstructural material length scales. This is done using two different approaches: (1) a modified von Kármán non-linear theory with modified couple stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories would be useful in determining the response of elastic continua, for example, consisting of embedded stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a conventional approach based on postulating additional balance laws or ad hoc addition of terms to the strain energy functional, the approaches presented here extend existing ideas to thermodynamically consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the polar decomposition theorem as a constraint and a representation for finite rotations in terms of displacement gradients for large deformation beam and plate theories. Classical couple stress theory is recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an overview of Eringen׳s non-local, Mindlin׳s modified couple stress theory, and the gradient elasticity theory of Srinivasa–Reddy is presented.  相似文献   

12.
Gradient elastic flexural Kirchhoff plates under static loading are considered. Their governing equation of equilibrium in terms of their lateral deflection is a sixth order partial differential equation instead of the fourth order one for the classical case. A variational formulation of the problem is established with the aid of the principle of virtual work and used to determine all possible boundary conditions, classical and non-classical ones. Two circular gradient elastic plates, clamped or simply supported at their boundaries, are analyzed analytically and the gradient effect on their static response is assessed in detail. A rectangular gradient elastic plate, simply supported at its boundaries, is also analyzed analytically and its rationally obtained boundary conditions are compared with the heuristically obtained ones in a previous publication of the authors. Finally, a plate with two opposite sides clamped experiencing cylindrical bending is also analyzed and its response compared against that for the cases of micropolar and couple-stress elasticity theories.  相似文献   

13.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

14.
In this paper, viscoelastic shear horizontal (SH) wave propagation in functionally graded material (FGM) plates and laminated plates are investigated. The controlling differential equation in terms of displacements is deduced based on the Kelvin–Voigt viscoelastic theory. The SH wave characteristics is controlled by two elastic constants and their corresponding viscous coefficients. By the Legendre polynomial series method, the asymptotic solutions are obtained. In order to verify the validity of the method, a homogeneous plate is calculated to make a comparison with available data. Through three different graded plates, the influences of gradient shapes on dispersion and attenuation are discussed. The viscous effects on the displacement and stress shapes are illustrated. The different boundary conditions are analyzed. The influential factors of the viscous effect are analyzed. Finally, two multilayered (two layer and five layer) viscoelastic plates that are composed of the same material volume fraction are calculated to show their differences from the graded plate.  相似文献   

15.
This paper deals with the homogenization of thin elastic plates weakened by periodically distributed fissures. The classical Kirchhoff theory of bending plates admits five different types of unilateral fissures. To derive effective properties of fissured plates we employ the asymptotic method. As a result we obtain five effective hyperelastic plates. An illustrative example concerns the homogenization of the plate with unidirectional fissures parallel to a straight line. The constitutive equation describing the effective plate is found provided that fissures are of the flexural type resembling that observed in reinforced concrete plates in bending.  相似文献   

16.
Non-linear plate theory for thin prismatic elastic bodies is obtained by estimating the total three-dimensional strain energy generated in response to a given deformation in terms of the small plate thickness. The Euler equations for the estimate of the energy are regarded as the equilibrium equations for the thin plate. Included among them are algebraic formulae connecting the gradients of the midsurface deformation to the through-thickness derivatives of the three-dimensional deformation. These are solvable provided that the three-dimensional strain energy is strongly elliptic at equilibrium. This framework yields restrictions of the Kirchhoff-Love type that are usually imposed as constraints in alternative formulations. In the present approach they emerge as consequences of the stationarity of the energy without the need for any a priori restrictions on the three-dimensional deformation apart from a certain degree of differentiability in the direction normal to the plate.  相似文献   

17.
通过损伤弹性薄板的变分方法,推导了损伤弹性薄板弯曲的运动控制方程.选取满足边界条件的挠度函数,采用Ritz法和 Galerkin法,将原问题转化为线性方程组的求解.通过算例分析,得到y=b/2处挠度和损伤随x的变化曲线,结果表明损伤薄板中任一点的位移总是大于无损薄板中的位移.  相似文献   

18.
A simple quadrilateral 12 DOF plate bending element based on Reissner–Mindlin theory for analysis of thick and thin plates is presented in this paper. This element is constructed by the following procedure:
  • 1.the variation functions of the rotation and shear strain along each side of the element are determined using Timoshenko's beam theory; and
  • 2.the rotation, curvature and shear strain fields in the domain of the element are then determined using the technique of improved interpolation.
The proposed element, denoted by ARS-Q12, is robust and free of shear locking and, thus, it can be employed to analyze very thin plate. Numerical examples show that the proposed element is a high performance element for thick and thin plates.  相似文献   

19.
Analytical wave propagation studies in gradient elastic solids and structures are presented. These solids and structures involve an infinite space, a simple axial bar, a Bernoulli–Euler flexural beam and a Kirchhoff flexural plate. In all cases wave dispersion is observed as a result of introducing microstructural effects into the classical elastic material behavior through a simple gradient elasticity theory involving both micro-elastic and micro-inertia characteristics. It is observed that the micro-elastic characteristics are not enough for resulting in realistic dispersion curves and that the micro-inertia characteristics are needed in addition for that purpose for all the cases of solids and structures considered here. It is further observed that there exist similarities between the shear and rotary inertia corrections in the governing equations of motion for bars, beams and plates and the additions of micro-elastic (gradient elastic) and micro-inertia terms in the classical elastic material behavior in order to have wave dispersion in the above structures.  相似文献   

20.
A theoretical framework for describing the kinematics and energetics of hexagonal atomic lattices, including planar carbon graphene sheets and cylindrical nanotubes, is proposed. By analogy with the membrane theory of thin shells, the deformation of the particulate lattice in the neighborhood of each atom is described in terms of a uniquely defined deformation gradient and companion local inner displacement. Expressions for the pointwise tensions developing in the plane of the lattice are developed, and a rational procedure for deriving discrete equilibrium equations is discussed. An alternative formulation involving the second-order deformation gradient that parallels the strain gradient theory of bulk media is proposed, and a tentative analogy with a the theory of micropolar elastic media is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号