首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
含双硫取代碳硼烷二齿配体的半夹心型钴16电子化合物CpCo[S2C2(B10H10)](Co16e)分别与1,4-二乙炔基苯(L1)、(S)-2,2′-二乙酰氧基-6,6′-二乙炔基-1,1′-联萘(L2)、2-溴-5-乙炔基噻吩(L3)和2,5-二乙炔基噻吩(L4)反应,分别得到18电子单核化合物CpCo(S2C2B10H9)(H2CCPhC≡CH)(1),CpCo(S2C2B10H9)[H2CC(C24H16O4)C≡CH](2),CpCo(S2C2B10H9)[H2CC(C4H2S)Br](3),和CpCo(S2C2B10H9)[H2CC(C4H2S)C≡CH](4)。化合物1~4的结构中都发生了金属诱导B-H键活化并生成了新的C-B键。在Co16e与L4的反应中,还得到了两分子炔烃以头对头二聚插入到金属中心的18电子化合物CpCo(S2C2B10H9)[HC≡C(C4H2S)C=CH-CH=C(C4H2S)C≡CH](5)。上述化合物通过NMR、IR、MS、元素分析等方法进行表征。  相似文献   

2.
16e半夹芯化合物CpCo(S2C2B10H10)(Cp:cyclopentadienyl)(1)与炔烃HC≡CC(O)Fc(Fc:ferrocenyl)在物质的量之比为1∶1时反应生成化合物CpCo(S2C2B10H9)(CH=CHC(O)Fc)(2)。在化合物2中,一分子HC≡CC(O)Fc偶合到原料化合物1的碳硼烷笼子的B(3)位点,导致B(3)位的氢原子迁移到炔烃的内部碳原子上形成烯烃取代基。2能继续与另外一分子HC≡CC(O)Fc反应,生成B-双取代产物CpCo(S2C2B10H8)(CH=CHC(O)Fc)2(3)。3仍然是1个16e化合物,并且在B(3,6)位点有2个反式烯烃取代基CH=CHC(O)Fc。在过量炔烃存在情况下,该反应生成化合物3及炔烃环三聚产物1,3,5-{HC=CC(O)Fc}3(4)。化合物2、3、4用红外,核磁,元素分析,质谱和单晶X-射线衍射分析等方法进行了表征。  相似文献   

3.
在二氯甲烷中,化合物(p-cymene)Ru2(μ-Se2)(S2C2B10H10)2 (1)与1-乙炔基环己醇反应得到加成产物(p-cymene)-Ru2(μ-Se2)(S2C2B10H10)2 (R1C=CR2) [R1 =H,R2=(cyclo-C6H10)(OH)(2);R1=(cyclo-C6H10)(OH),R2=H(3)].化合物2和3在氯仿中加热回流可脱水分别生成4和5,二者在甲苯中进一步加热回流可实现相互转化.所有化合物中,炔烃碳碳三键选择性地加成在两个不同的(S2C2B10H10)2-配体的硫原子[S(2)和S(3)]上,从而使混合价双钌中心RuⅡ/RuⅣ(18e/16e)转变为单一价态的RuⅡ/RuⅡ (18e/18e),得到进一步稳定的配合物.所有化合物通过元素分析、质谱、核磁共振进行了表征,并解析了化合物2的X衍射单晶结构.  相似文献   

4.
在二氯甲烷中,化合物(p-cymene)Ru2(μ-Se2)(S2C2B10H10)2(1)与l-乙炔基环己醇反应得到加成产物(p-cymene)-Ru2(μ-Se2)(S2C2B10H10)2(R1C=CR2)[R1=H,R2=(cyclo-C6H10)(OH)(2);R1=(cyclo-C6H10)(OH),R2=H(3)].化合物2和3在氯仿中加热回流可脱水分别生成4和5,二者在甲苯中进一步加热回流可实现相互转化.所有化合物中,炔烃碳碳三键选择性地加成在两个不同的(S2C2B10H10)2-配体的硫原子[S(2)和S(3)]上,从而使混合价双钌中心RuII/RuIV(18e/16e)转变为单一价态的RuII/RuII(18e/18e),得到进一步稳定的配合物.所有化合物通过元素分析、质谱、核磁共振进行了表征,并解析了化合物2的X衍射单晶结构.  相似文献   

5.
钌可以促使炔烃通过亚乙烯基钌卡宾金属配合物或钌金属杂环配合物的形式发生碳-碳偶联反应,它的化学性质很大程度上取决于配体的电子和立体特征.普通环戊二烯基钌配合物可以促使炔烃三聚生成苯环衍生物或使两分子炔烃和一分子含C=X键(X=C,O,S,N等)的不饱和底物发生环加成反应得到杂环化合物.含桥联碳硼烷-环戊二烯基配体的钌乙腈配合物[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2(1)表现出与环戊二烯基钌不同的反应性质.例如,配合物1与三甲基硅基取代的端炔或中间炔反应可生成含有单或双亚乙烯基有机钌卡宾配合物;与末端芳炔则通过三分子炔和桥联配体中的环戊二烯基发生加成反应得到含有独特三环结构的有机钌配合物.以上结果表明,配体的位阻效应和炔烃的种类都可以影响产物的类型.本文进一步研究了此钌乙腈配合物1与烷基或芳基取代的中间炔及中间二炔的反应.配合物1与3-己炔或二苯乙炔在甲苯中于80℃反应可以生成对空气和水稳定的η4-钌-环丁二烯配合物[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(η4-C4Et4)(2)或[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(η4-C4Ph4...  相似文献   

6.
用自洽场理论 (HF)和密度泛函理论 (DFT)的B3LYP方法 ,在 6 31G 的水平上对化合物(HAlNH) 2 和 (HAlNH) 3 的几何结构进行优化 ,并分别与环丁二烯C4 H4 和苯分子C6H6的结构和成键方式进行比较。以B3LYP STO 3G方法讨论其分子轨道波函数 (Ψ)。结果表明 :C4 H4 和 (HAlNH) 2 均为D2h对称 ,前者为长方形结构 ,形成两个孤立的π键 ;而后者为菱形结构 ,形成一个π44键。C6H6和 (HAlNH) 3分子点群分别为D6h和D3h,并均形成一个π66键。成键原子对分子轨道的贡献不同 ,其中C原子是完全等价的 ,而Al和N原子各不相同 ,N原子比Al的贡献要大得多  相似文献   

7.
半夹芯16e化合物CpCoS2C2B10H10(Cp:cyclopentadienyl) (1)与HC≡CCO2Me在2-甲基二硫代丙酸存在下反应生成化合物{(C5H4CoS2C2B9H9)(CH=CHCO2Me)(Me2C=CS2H)} (2)和(Me2C=CS2H)3Co (3)。在化合物2中, 原料化合物1中的一个S-Co键断裂, 该S原子与一分子HC≡CCO2Me末端炔基碳原子连接。Co原子与2-甲基二硫代丙酸的S原子连接成键, 2-甲基二硫代丙酸分子中的SH基团与Co原子通过配位键相连;同时, Cp环的一个碳原子与碳硼烷笼体的B(3)/B(6)位相连, 该B(3)/B(6)位的氢原子迁移到炔烃HC≡CCO2Me的内部炔基碳原子上形成反式烯键。3个2-甲基二硫代丙酸分子中的3个S原子分别与1中的Co原子通过共价键连接, 3个SH基团与Co原子通过配位键相连, 从而形成化合物3。化合物2和3分别用红外、核磁、元素分析、质谱和单晶X-射线衍射分析等方法进行了表征。  相似文献   

8.
用碳硼烷的含硒锂盐Li2Se2C2B10H10 (1)与单茂羰基铁的氯化物Cp′Fe(CO)2Cl(2)反应得到不对称型双核半夹心结构铁的化合物Cp′2Fe2(CO)3Se2C2B10H10(3). X射线单晶结构分析表明其中一个铁原子是手性的, 而且两个铁原子之间没有相互作用.  相似文献   

9.
《化学通报》2001,64(9):579-582
用自洽场理论(HF)和密度泛函理论(DFT)的B3LYP方法,在6-31G*的水平上对化合物(HAlNH)2和(HAlNH)3的几何结构进行优化,并分别与环丁二烯C4H4和苯分子C6H6的结构和成键方式进行比较.以B3LYP/STO-3G方法讨论其分子轨道波函数(ψ).结果表明C4H4和(HAlNH)2均为D2h对称,前者为长方形结构,形成两个孤立的π键;而后者为菱形结构,形成一个π44键.C6H6和(HAlNH)3分子点群分别为D6h和D3h,并均形成一个π66键.成键原子对分子轨道的贡献不同,其中C原子是完全等价的,而Al和N原子各不相同,N原子比Al的贡献要大得多.  相似文献   

10.
1,1'-二乙基-2-(和3)-二茂铁酰基二茂铁经LiAlH4还原得到两种相应的双二茂铁基甲醇。它们对酸的敏感性很高,与BF3在二氯甲烷中作用可形成稳定的二茂铁基甲基碳正离子,无需从溶液中分离出来,便可与胺RNH2[R=C2H5,n-C3H7,n-C4H9,HOCH2CH2,HOCH(CH3)CH2,HOCH2CH(C2H5)]作用得到产率颇高的二茂铁基胺,这种由α-二茂铁基醇制备α-二茂铁基胺的方法具有简单、快速和原料廉价的特点。  相似文献   

11.
The reaction of the 16e half-sandwich complex [CpCo(S2C2B10H10)] (1S; Cp: cyclopentadienyl) with ethynylferrocene in CH2Cl2 at ambient temperature leads to [CpCo(S2C2B10H9)-(CH2CFc)] (2S; Fc: ferrocenyl) and 1,2,4-triferrocenylbenzene. In 2S, B substitution occurs at the carborane cage in the position B3/B6 with the formation of a C-B bond. In the presence of the protic solvent MeOH, 2S loses a CpCo fragment to generate [(CH2CFc)(S2C2B10H9)] (3S). On the other hand, 2S can take a free CpCo fragment to form [(CpCo)2(S2C2B9H8)-(CHCFc)] (4S) containing a nido-C2B9 unit. In sharp contrast, [CpCo-(Se2C2B10H10)] (1Se) does not react with the alkyne in CH2Cl2, but in MeOH [(CHCFc)(Se2C2B10H10)] (5Se) is generated without the presence of a CpCo unit. The reaction of 1 with dimethyl acetylenedicarboxylate at ambient temperature leads to insertion compounds [CpCo(E2C2B10H10){(MeO2C)-C=C(CO2Me)}] (6S, E=S; 6 Se, E=Se). Upon heating, 6S rearranges to two geometrical isomers [CpCo(S2C2B10H9){(MeO2C)C=CH(CO2Me)}] (7S) and [CpCo(S2C2B10H9){(MeO2C)-CHC(CO2Me)}] (8S). In both, B-H functionalization takes place at the carborane cage in the position B3/B6, but 7S is a 16e complex with an olefinic unit in a Z configuration, and 8S is an 18e complex containing an alkyl B-CH group. Further treatment of 7 S with dimethyl acetylenedicarboxylate at ambient temperature affords two B-disubstituted complexes at the carborane cage in the positions of the B3 and B6 sites, that is, [CpCo(S2C2-B10H8){(MeO2C)C=CH(CO2Me)}2] (9S) and [CpCo(S2C2B10H8){(MeO2C)-CHC(CO2Me)}{(MeO2C)C=CH-(CO2Me)}] (10S). Compound 9S is a 16e complex with two olefinic units in E/E configurations, whereas 10S is an 18e species containing both an olefinic substituent and an alkyl B--CH unit. The reaction of 7S with methyl acetylenemonocarboxylate at ambient temperature leads to the sole 16e compound [CpCo(S2C2B10H8){CH=CH(CO2Me)}-{(MeO2C)C=CH(CO2Me)}] (11S). In contrast, 6Se does not rearrange. All new complexes 2S-4S, 5Se, 6Se, and 7S-11S were characterized by NMR spectroscopy (1H, 11B, 13C) and X-ray structural analyses were performed for 2S-4S, 5Se, 6Se, and 7S-9S.  相似文献   

12.
Liu G  Hu J  Wen J  Dai H  Li Y  Yan H 《Inorganic chemistry》2011,50(9):4187-4194
The reaction of the 16-electron half-sandwich complex CpCo(S(2)C(2)B(10)H(10)) (1; Cp = cyclopentadienyl) with ethyl diazoacetate (EDA) at ambient temperature leads to compounds CpCo(S(2)C(2)B(10)H(10))(CHCO(2)Et) (2), CpCo(S(2)C(2)B(10)H(8))(CHCO(2)Et)(CH(2)CO(2)Et)[CH(CO(2)Et)(CH(2)CO(2)Et)] (3), CpCo(S(2)C(2)B(10)H(9))(CH(2)CO(2)Et)(CHCO(2)Et)(2) (4), CpCo(S(2)C(2)B(10)H(9))(CHCO(2)Et)(CH(2)CO(2)Et) (5), and CpCo(S(2)C(2)B(10)H(9))(CHCO(2)Et)(2)(CH(2)CO(2)Et) (6). In 2, the EDA molecule has been inserted into one Co-S bond in 1 with the loss of N(2) to form an 18-electron compound containing a three-membered metallacyclic ring. In 3, two B-H bonds of the carborane cage have been activated and the unusual B4-H bond activation leads to the formation of a stable Co-B bond. Two EDA molecules are inserted into the Co-B3 bond to generate an unexpected six-membered heterocyclic ring Co-B-B-C-C-O. In 4, a stable Co-B bond is present as well but in the position B3/B6, and two EDA molecules are inserted into one Co-S bond to produce a five-membered heterocyclic ring Co-C-C-C-O. In 5, one EDA is inserted into the Co-B bond with the formation of a C-B bond in the position B3/B6. One more EDA is inserted into the Co-S bond in 5 to generate 6. Upon heating, 6 loses the BH vertex close to the two carbon atoms to lead to CpCo(S(2)C(2)B(9)H(9))(CHCO(2)Et)(CH(2)CO(2)Et)(2) (7) containing a nido-C(2)B(9) unit. All of the new compounds 2-7 were characterized by NMR spectroscopy ((1)H, (11)B, and (13)C), mass spectrometry, IR spectroscopy, and elemental analysis, and their solid-state structures were further characterized by X-ray structural analysis.  相似文献   

13.
The synthesis and structural analysis of two novel families of three-component reversible redox cycles [(C(2)B(9)H(11))M(mu-SPh)(2)](2)(n)PPN(n) (M = Mo, n = 2-, 2; 1-, 3; 0, 4; and M = W, n = 2-, 6; 1-, 7; 0, 8), where the cleavage and re-formation of the carborane cage C-C bond is observed during the redox reaction, are reported. Electronic saturation of the metal center (18e center) and the lack of bulky substituents on the carborane cage suggest that the deformed carborane cages in 2.PPN(2), 6.PPN(2), and 7.PPN invoke a new kind of deformed cage ("semicloso" framework). The XPS results show that the unprecedented competition for electron density between the metal center and the carborane cage is involved in the cleavage and formation of the carborane C-C bond.  相似文献   

14.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

15.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

16.
The new compounds CpV(B(3)H(8))(2), CpCr(B(3)H(8))(2), and Cp(2)Co(2)(B(6)H(14)) have been synthesized by treating the pentamethylcyclopentadienyl complexes [CpVCl(2)](3), [CpCrCl(2)](2), and [CpCoCl](2) with NaB(3)H(8). X-ray crystallography shows that CpV(B(3)H(8))(2) and CpCr(B(3)H(8))(2) have the same ligand sets but different molecular structures: the vanadium compound contains two bidentate B(3)H(8) ligands (i.e., bound to the metal center via two vicinal hydrogen atoms), whereas the chromium compound has one bidentate B(3)H(8) ligand and one B(3)H(8) ligand bound in an unprecedented fashion via two geminal hydrogen atoms. The "gem-bound" B(3)H(8) group itself has an atypical structure consisting of a BH(2)-BH(2)-BH(3) triangle with one additional hydrogen atom bridging the unique BH(2)-BH(2) edge. The B-B distances are nearly identical within experimental error at 1.790(5), 1.792(5), and 1.786(6) Angstrom. The relationship between the electronic and molecular structures of the V and Cr compounds is briefly discussed. The structure of Cp(2)Co(2)(B(6)H(14)) can be viewed in two different ways: as a dicobalt complex in which two CpCo units are each bound to four adjacent boron atoms of an S-shaped B(6)H(14) ligand, or as an eight-vertex hypho cluster compound. In the former case, the B(6)H(14) ligand is best regarded as a dianionic bi-borallyl group H(3)B(mu-H)BH(mu-H)BHBH(mu-H)BH(mu-H)BH(3) in which one hydrogen at each end of the chain is involved in an agostic interaction. From a cluster point of view, the structure of Cp(2)Co(2)(B(6)H(14)) can be generated by removing three adjacent high-connectivity vertices from the eleven-vertex closo polyhedron. The Co-B distances vary from 2.008(5) to 2.183(4) Angstrom, and the B-B distances within in the S-shaped chain range from 1.734(8) to 1.889(6) Angstrom. Finally, a new synthesis of the known molybdenum compound Cp(2)Mo(2)(B(5)H(9)) is described; its structure as established by X-ray crystallography closely resembles that of the previously described (C(5)H(4)Me) analogue.  相似文献   

17.
邻位碳硼烷分别与正丁基锂、硫粉和Me4CpCo(CO)I2反应合成得到半夹芯16电子碳硼烷化合物Me4CpCoS2C2B10H10 (1).1与二茂铁炔酮在二氯甲烷中反应得到产物{(Me4CpCoS2C2B10H10)[FcC(O)CHCCHCC(O)Fc]} (2)(Fc=二茂铁基).2是一个1:2的加成产物,2个二茂铁炔酮分子以头-尾的方式加成到分子1中的1个Co-S键上.12分别用红外、核磁、元素分析、质谱和单晶X-射线衍射等表征方法进行了结构表征.  相似文献   

18.
The reaction of the 16-electron "pseudo-aromatic" complex Cp*Ir[Se2C2(B10H10)] (1, Cp* = eta5-C5Me5) with [Ir(cod)(micro-OC2H5)]2 leads to the trinuclear iridium complexes {(cod)Ir[Se2C2(B10H8)(OC2H5)]}Ir{[Se2C2(B10H10)]IrCp*} (2), {(cod)Ir[Se2C2(B10H8)(OC2H5)]}Ir{[Se2C2(B10H9)]IrCp*} (3), {Cp*Ir[Se2C2(B10H9)]}{IrSe(2)[C2(B10H9)(OC2H5)]}{[Se2C2(B10H10)] IrCp*} (4) and one mononuclear complex Cp*Ir[Se2C2(B10H8)(OC2H5)(2)] (5). The reactivity of 2 was investigated and revealed that transformation from 2 to 3 occurred thermally in solution. The transoid complex 2 (with the carborane diselenolato units in trans position) can be converted in nearly 90% yield to the cisoid complex 3. In complexes 2, 3, two diselenolato carborane ligands bridge the Ir(3) core, which consists of Ir-Ir metal bonds. Compared with transoid 2, the cisoid 3 contains two iridium-boron bonds. Complex 4 consists of three different coordination environment carborane ligands (Ir-B(cluster): {Cp*Ir[Se2C2(B10H9)]}, O-B(cluster): {[Se2C2(B10H9)](OC2H5)}, and intact carborane: {Cp*Ir[Se2C2 (B10H10)]}) without the presence of a metal-metal bond. Analogous reaction of 1 with [Ir(cod)(micro-OCH(3))](2) results in formation of the trinuclear complex {Cp*Ir[Se2C2(B10H9)]}{IrSe(2)[C2(B10H9)(OCH3)]}{[Se2C2(B10H10)]IrCp*} (6) and mononuclear complex Cp*Ir[Se2C2(B10H8)(OCH3)(2)] (7). The structures of 2, 3, 4, 5, 6 and 7 have been determined by crystallographic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号