首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Modeling incompressible flows using a finite particle method   总被引:4,自引:0,他引:4  
This paper describes the applications of a finite particle method (FPM) to modeling incompressible flow problems. FPM is a meshfree particle method in which the approximation of a field variable and its derivatives can be simultaneously obtained through solving a pointwise matrix equation. A set of basis functions is employed to obtain the coefficient matrix through a sequence of transformations. The finite particle method can be used to discretize the Navier–Stokes equation that governs fluid flows. The incompressible flows are modeled as slightly compressible via specially selected equations of state. Four numerical examples including the classic Poiseuille flow, Couette flow, shear driven cavity and a dam collapsing problem are presented with comparisons to other sources. The numerical examples demonstrate that FPM is a very attractive alternative for simulating incompressible flows, especially those with free surfaces, moving interfaces or deformable boundaries.  相似文献   

2.
Computation of rarefied diatomic gas flows through a plane microchannel   总被引:1,自引:0,他引:1  
A numerical method based on a model kinetic equation was developed for computing diatomic rarefied gas flows in two dimensions. Nitrogen flows through a plane microchannel were computed, and the gas flow rate was constructed as a function of the Knudsen number for various channel lengths.  相似文献   

3.
4.
We investigate self-similar solutions of the Navier–Stokes equations for the axisymmetric flow of a viscous incompressible fluid. The original equations are transformed by the Slezkin method. On the basis of analysis of physical properties of the flow and the Slezkin general equation, we show that, in parallel with the known solutions of this equation, there exist several other solutions with physical meaning. We consider the simplest case of irrotational flows for which current lines may be circles, ellipses, parabolas, and hyperbolas. Unlike the Landau and Squire solutions, these flows are interpreted as nonjet flows of fluid flowing into and out of a homogeneous porous axially symmetric body.  相似文献   

5.
A parallel multiblock implementation of a second-order accurate implicit numerical method based on solving a model kinetic equation is proposed for analyzing three-dimensional rarefied gas flows. The performance of the method is illustrated by computing test examples of gas flows in a circular pipe in a wide range of Knudsen numbers. The convergence rate and scalability of the method are analyzed depending on the number of blocks in the spatial grid.  相似文献   

6.
In this paper we present an efficient methodology for approximating the distribution function of the net present value of a series of cash‐flows, when discounting is presented by a stochastic differential equation as in the Vasicek model and in the Ho–Lee model. Upper and lower bounds in convexity order are obtained. The high accuracy of the method is illustrated for cash‐flows for which no analytical results are available. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The method based on the numerical solution of a model kinetic equation is proposed for analyzing three-dimensional rarefied gas flows. The basic idea behind the method is the use of a second-order accurate TVD scheme on hybrid unstructured meshes in physical space and a fast implicit time discretization method without iterations at the upper level. The performance of the method is illustrated by computing test examples of three-dimensional rarefied gas flows in variously shaped channels in a wide range of Knudsen numbers.  相似文献   

8.
The problem of nonrectilinear steady-state flow of a nonlinear viscoelastic liquid in an arbitrary cylindrical channel is examined. On the assumption that the cross flows are insignificant as compared with the longitudinal flows an equation of state is derived for the flow regime in question. A variational principle established for steady-state flows of the investigated media is proposed as the basis of a method of solving problems of the flow of polymer materials in arbitrary cylindrical channels. The flow of a polymer solution in rectangular channels is investigated.Institute of Mechanics, AS UkrSSR, Kiev. Translated from Mekhanika Polimerov, Vol. 4, No. 6, pp. 1103–1111, November–December, 1968.  相似文献   

9.
Fluid solid mixtures are generally considered as second grade fluids and are modeled as fluids with variable physical parameters. Thus, an analysis is performed for a second grade fluid with space dependent viscosity, elasticity and density. Two types of time-dependent flows are investigated. An eigen function expansion method is used to find the velocity distribution. The obtained solutions satisfy the boundary and initial conditions and the governing equation. Remarkably some exact analytic solutions are possible for flows involving second grade fluid with variable material properties in terms of trigonometric and Chebyshev functions.  相似文献   

10.
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.  相似文献   

11.
A third-order accurate finite-volume method on unstructured meshes is proposed for solving viscous gasdynamic problems. The method is described as applied to the advection equation. The accuracy of the method is verified by computing the evolution of a vortex on meshes of various degrees of detail with variously shaped cells. Additionally, unsteady flows around a cylinder and a symmetric airfoil are computed. The numerical results are presented in the form of plots and tables.  相似文献   

12.
A high-accuracy modification of Godunov’s method for three-dimensional unsteady ideal gas flows is proposed. For the linear advection equation, a fully three-dimensional second-order accurate monotone scheme is designed with corrections computed on a variable stencil whose orientation depends on the signs of the equation coefficients. For the linear scalar advection equation, the scheme is proved to possess the positive approximation property. The method is tested by computing the flow in a three-dimensional Ludwieg tube with a square cross section.  相似文献   

13.
Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions are investigated. Conservation flows of the dynamic motion are obtained utilizing multiplier approach. Using the unified method, a collection of exact solitary and soliton solutions of Kudryashov-Sinelshchikov equation is presented. Collocation finite element method based on quintic B-spline functions is implemented to the equation to evidence the accuracy of the proposed method by test problems. Stability analysis of the numerical scheme is studied by employing von Neumann theory. The obtained analytical and numerical results are in good agreement.  相似文献   

14.
15.
粉末注射成形填充过程的数值模拟   总被引:1,自引:0,他引:1  
本文将粉末注射成形喂料在薄壁模腔中的流动视为二维流动,以流变学的基本方程为基础,建立了从动量方程、连续方程和热传递方程得到的描述PIM喂料充模二维流动的数学模型。在无滑移边界的条件下,推导了喂料熔体流导率的计算公式和压力场的控制方程,得到的压力场控制方程是一非线性椭圆偏微分方程.从而可用Galerkin方法进行数值求解,使模型的数值求解成为可能,为进一步对粉末注射成形进行计算机模拟和数值分析奠定了数学基础。  相似文献   

16.
该文根据stokes算子特征函数,利用谱方法研究了由轴对称Taylor Couette流导出的多模态方程.给出了三模态方程平衡点存在的条件,证明了它的吸引子的存在性,并给出其Haus dorff维数的上界的估计.  相似文献   

17.
This work presents a fixed-point fast sweeping weighted essentially non-oscillatory method for the multi-commodity continuum traffic equilibrium assignment problem with elastic travel demand. The commuters’ origins (i.e. home locations) are continuously dispersed over the whole city with several highly compact central business districts. The traffic flows from origins to the same central business district are considered as one commodity. The continuum traffic equilibrium assignment model is formulated as a static conservation law equation coupled with an Eikonal equation for each commodity. To solve the model, a pseudo-time-marching approach and a third order finite volume weighted essentially non-oscillatory scheme with Lax–Friedrichs flux splitting are adopted to solve the conservation law equation, coupled with a third order fast sweeping numerical method for the Eikonal equation on rectangular grids. A fixed-point fast sweeping method that utilizes Gauss–Seidel iterations and alternating sweeping strategy is designed to improve the convergence for steady state computations of the problem. A numerical example is given to show the feasibility of the model and the effectiveness of the solution algorithm.  相似文献   

18.
We present a coupled lattice Boltzmann method (LBM) to solve a set of model equations for electrokinetic flows in micro-/nano-channels. The model consists of the Poisson equation for the electrical potential, the Nernst–Planck equation for the ion concentration, and the Navier–Stokes equation for the flows of the electrolyte solution. In the proposed LBM, the electrochemical migration and the convection of the electrolyte solution contributing to the ion flux are incorporated into the collision operator, which maintains the locality of the algorithm inherent to the original LBM. Furthermore, the Neumann-type boundary condition at the solid/liquid interface is then correctly imposed. In order to validate the present LBM, we consider an electro-osmotic flow in a slit between two charged infinite parallel plates, and the results of LBM computation are compared to the analytical solutions. Good agreement is obtained in the parameter range considered herein, including the case in which the nonlinearity of the Poisson equation due to the large potential variation manifests itself. We also apply the method to a two-dimensional problem of a finite-length microchannel with an entry and an exit. The steady state, as well as the transient behavior, of the electro-osmotic flow induced in the microchannel is investigated. It is shown that, although no external pressure difference is imposed, the presence of the entry and exit results in the occurrence of the local pressure gradient that causes a flow resistance reducing the magnitude of the electro-osmotic flow.  相似文献   

19.
A dual-mesh hybrid numerical method is proposed for high Reynolds and high Rayleigh number flows. The scheme is of high accuracy because of the use of a fourth-order finite-difference scheme for the time-dependent convection and diffusion equations on a non-uniform mesh and a fast Poisson solver DFPS2H based on the HODIE finite-difference scheme and algorithm HFFT [R.A. Boisvert, Fourth order accurate fast direct method for the Helmholtz equation, in: G. Birkhoff, A. Schoenstadt (Eds.), Elliptic Problem Solvers II, Academic Press, Orlando, FL, 1984, pp. 35–44] for the stream function equation on a uniform mesh. To combine the fast Poisson solver DFPS2H and the high-order upwind-biased finite-difference method on the two different meshes, Chebyshev polynomials have been used to transfer the data between the uniform and non-uniform meshes. Because of the adoption of a hybrid grid system, the proposed numerical model can handle the steep spatial gradients of the dependent variables by using very fine resolutions in the boundary layers at reasonable computational cost. The successful simulation of lid-driven cavity flows and differentially heated cavity flows demonstrates that the proposed numerical model is very stable and accurate within the range of applicability of the governing equations.  相似文献   

20.
A fluid flow in a multiply connected domain generated by an arbitrary number of point vortices is considered. A stream function for this flow is constructed as a limit of a certain functional sequence using the method of images. The convergence of this sequence is discussed, and the speed of convergence is determined explicitly. The presented formulas allow for an easy computation of the values of the stream function with arbitrary precision in the case of well-separated cylinders. The considered problem is important for applications such as eddy flows in oceans. Moreover, since finding the stream function of the flow is essentially identical to finding the modified Green’s function for Laplace’s equation, the presented method can be applied to a more general class of applied problems which involve solving the Dirichlet problem for Laplace’s equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号