首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnO thin films with the thickness of about 15 nm on (0 0 0 1) sapphire substrates were prepared by pulsed laser deposition. X-ray photoelectron spectroscopy indicated that both as-grown and post-annealed ZnO thin films were oxygen-rich. H2 sensing measurements of the films indicated that the conductivity type of both the unannealed and annealed ZnO films converted from p-type to n-type in process of increasing the operating temperature. However, the two films showed different conversion temperatures. The origin of the p-type conductivity in the unannealed and annealed ZnO films should be attributed to oxygen related defects and zinc vacancies related defects, respectively. The conversion of the conductivity type was due to the annealing out of the correlated defects. Moreover, p-type ZnO films can work at lower temperature than n-type ZnO films without obvious sensitivity loss.  相似文献   

2.
C-cut and α-cut sapphire substrates are used to grow epitaxial titanium oxide films by pulsed-laser deposition at 700 °C under a controlled oxygen pressure in the 10−1-10−5 mbar range. The rutile phase is evidenced in films whatever the substrate and the oxygen pressure while the anatase phase is only observed on c-cut sapphire substrate and for oxygen pressure down to 10−3 mbar. No other titanium oxide phases (i.e. TiO, Ti2O3 or Magneli phases) are identified despite the oxygen-deficiency observed in films grown at low oxygen pressure. According to asymmetric X-ray diffraction measurements performed on films, the main axis growth and the in-plane epitaxial relationships between titanium oxide films and sapphire substrates are found to be depending on the orientation of the sapphire basal plane and on the oxygen pressure. The anatase crystallites are highly oriented with the following epitaxial relationship . The rutile phase is (2 0 0) oriented on c-cut sapphire substrate and displays two distinct in-plane relationships: . The use of α-cut sapphire substrate leads to the growth of rutile crystallites (2 0 0) or (1 0 1) oriented. In these cases, the in-plane orientations are , respectively. For the two substrates used, schematic views of atomic arrangement of the different interfaces are proposed.  相似文献   

3.
Nanostructured titanium dioxide (TiO2) thin films have been prepared on metal substrates using a facile layer-by-layer dip-coating method. The phase structure and morphologies of preparing samples were characterized by means of X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results confirm that films are highly crystalline anatase TiO2 and free from other phases of titanium dioxide. Scanning electron microscopy (SEM) shows that the nanoparticles are sintered together to form a compact structure. The electrical properties of samples were investigated by cutternt-voltage analysis, the result indicates that a rectifying junction between the nanocrystalline TiO2 film and metal substrate was formed. The photoelectrochemical characteristics recorded under 1.5 AM illumination indicates that the as-fabricated thin film electrode possesses the highest photocurrent density at 450 °C, which is 1.75 mA/cm2 at 0 V vs. Ag/AgCl.  相似文献   

4.
Micro-arrayed patterns of p-type copper sulfide (CuxS) thin films with positive and negative features were deposited onto the surfaces of n-type TiO2 semiconductor films via a selective nucleation and growth process from aqueous solution. The surface functional molecules of the UV photo-oxidised patterned SAMs were utilized to direct the nucleation and growth of CuxS crystallites. The resultant CuxS/TiO2 composite films with negative and positive CuxS patterns on the TiO2 film surface were investigated using SEM, XRD, XPS and a 3D Surface Profiler. It is demonstrated that regular and compact patterned films of Cu2S crystallites had been deposited onto the n-type TiO2 surface, with sharp edges demarcating the boundaries between the patterned Cu2S region and the TiO2 film region. The UV-vis spectra for three Cu2S/TiO2 films exhibit a wide absorption between 300 nm and 450 nm. The maximum wavelength differences in the spectra of Cu2S/TiO2 films and TiO2 film were attributed to the added absorption of Cu2S films at 302 nm and the unchanged adsorption of TiO2 films. The absorption intensities of the Cu2S/TiO2 films could be varied in the UV-vis range using the Cu2S patterned features (positive, negative).  相似文献   

5.
S.H. Cheung 《Surface science》2007,601(7):1754-1762
We describe the growth and properties of well-defined epitaxial TiO2−xNx rutile for the first time. A mixed beam of atomic N and O radicals was prepared in an electron cyclotron resonance plasma source and Ti was supplied from a high-temperature effusion cell or an electron beam evaporator, depending on the required flux. A very high degree of structural quality is generally observed for films grown under optimized anion-rich conditions. N substitutes for O in the lattice, but only at the ∼1 at.% level, and is present as N3−. Epitaxial growth of TiO2 and TiO2−xNx rutile prepared under anion-rich conditions is accompanied by Ti indiffusion, leading to interstitial Ti (Tii), which is a shallow donor in rutile. Our data strongly suggest that Tii donor electrons compensate holes associated with substitutional N2− (i.e., Ti(III) + N2− → Ti(IV) + N3−), leading to highly resistive or weakly n-type, but not p-type material. Ti 2p core-level line shape analysis reveals hybridization of N and Ti, as expected for substitutional N. Ti-N hybridized states fall in the gap just above the VBM, and extend the optical absorption well into the visible.  相似文献   

6.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

7.
Ba0.7−xSr0.3MnxTiO3 (x = 0, 0.025, 0.05) thin films have been prepared on copper foils using sol-gel method. The films were processed in an atmosphere with low oxygen pressure so that the substrate oxidation is avoided and the formation of the perovskite phase is allowed. XRD and SEM results showed that Mn doping enhanced the crystallization of the perovskite phase in the films. The Mn substitution prevents the reduction of Ti4+ to Ti3+, which is supported by XPS analysis. The Ba0.7−xSr0.3MnxTiO3 film with x = 0.025 (BSMT25) exhibits preferred dielectric behavior and a lower leakage current density among the three thin films. The dielectric constant and loss of the BSMT25 film are 1213.5 and 0.065 at 1 MHz and around zero field, which are mostly desired for embedded capacitor applications. The mechanism of Mn doping on improving the electrical properties of barium strontium titanate (BST) thin films was investigated.  相似文献   

8.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

9.
This paper focuses on analyzing structural and optoelectronic properties of (ZnSnCuTiNb)1 − xOx films. The results of XRD and HRTEM indicate that the (ZnSnCuTiNb)1 − xOx films are all of amorphous without any multi-phase structure. XPS analysis confirms that the increase of the oxygen content makes the cations electron binding energy higher, suggesting the removal of valence electrons or the extent of oxidation can change the optoelectronic properties of the films. The (ZnSnCuTiNb)1 − xOx films possess the characteristics of optoelectronic semiconductor whose oxygen content are 51.6 and 56 atom%. These films have carrier concentrations of 2.62 × 1020 and 1.37 × 1017 cm−3, and conductivities (σ) of 57.2 and 9.45 × 10−3 (Ω cm)−1, and indirect band gaps of 1.69 and 2.26 eV, respectively. They are n-type oxide semiconductors.  相似文献   

10.
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film.  相似文献   

11.
In order to obtain p-type ZnO thin films, effect of atomic ratio of Zn:N:Al on the electronic and structural characteristic of ZnO thin films was investigated. Hall measurement indicated that with the increase of Al doping, conductive type of as-grown ZnO thin films changed from n-type to p-type and then to n-type again, reasons are discussed in details. Results of X-ray diffraction revealed that co-doped ZnO thin films have similar crystallization characteristic (0 0 2 preferential orientation) like that of un-doping. However, SEM measurement indicated that co-doped ZnO thin films have different surface morphology compared with un-doped ZnO thin films. p-type ZnO thin films with high hole concentration were obtained on glass (4.6 × 1018 cm−3) and n-type silicon (7.51 × 1019 cm−3), respectively.  相似文献   

12.
The Hg-doped and undoped nano-crystalline TiO2 films on ITO glass substrates surface and polycrystalline powders were prepared by sol-gel dip coating technique. The crystal structure and surface morphology of TiO2 were characterized by means of X-ray diffractometer (XRD), atomic force microscope (AFM), spectrophotometer, Fourier-transform infrared (FTIR), and spectroscopic ellipsometry (SE). The results indicated that the powder of TiO2, doped with 5% Hg in room temperature was only composed of the anatase phase whereas in the undoped powder exhibits an amorphous phase were present. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 400 °C. The average crystallite size of the undoped TiO2 films was about 8.17 nm and was increased with Hg-doping in the TiO2 films. Moreover, the grains distributed more uniform and the surface roughness was greater in the Hg-doped TiO2 films than in the undoped one. Refractive index and porosity were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range (1.95-2.49) and the porosity is in the range (47-2.8). The coefficient of transmission varies from 60 to 90%. SE study was used to determine the annealing temperature effect on the optical properties in the wavelength range from 0.25 to 2 μm and the optical gap of the Hg-doped TiO2 thin films.  相似文献   

13.
Tungsten trioxide and titanium dioxide thin films were synthesised by pulsed laser deposition. We used for irradiations of oxide targets an UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser source, at 2 J/cm2 incident fluence value. The experiments were performed in low oxygen pressure. The (0 0 1) SiO2 substrates were heated during the thin film deposition process at temperature values within the 300-500 °C range. The structure and crystalline status of the obtained oxide thin films were investigated by high resolution transmission electron microscopy. Our analyses show that the films are composed by nanoparticles with average diameters from a few to a few tens of nm. Moreover, the films deposited at substrate temperatures higher than 300 °C are crystalline. The tungsten trioxide films consist of a mixture of triclinic and monoclinic phases, while the titanium dioxide films structure corresponds to the tetragonal anatase phase. The oxide films average transmittance in the visible-infrared spectral range is higher than 80%, which makes them suitable for sensor applications.  相似文献   

14.
Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target at low fluence. The topography and structure of the deposited layers are characterized using in situ high pressure RHEED and atomic force microscope (AFM). Based on these observations the growth mode of the films is discussed. The results will be compared to earlier results obtained for the growth of TiN films on (1 0 0) MgO.  相似文献   

15.
Highly transparent conductive Dy2O3 doped zinc oxide (ZnO)1-x(Dy2O3)x nanocrystalline thin films with x from 0.5% to 5% have been deposited on glass substrate by pulsed laser deposition technique. The structural, electrical and optical properties of Dy2O3 doped thin films were investigated as a function of the x value. The experimental results show that the Dy concentration in Dy-doped ZnO thin films has a strong influence on the material properties especially electrical properties. The resistivity decreased to a minimum value of 5.02 × 10−4 Ω cm with x increasing from 0.5% to 1.0%, then significantly increased with the further increasing of x value. On the contrary, the optical direct band gap of the (ZnO)1-x(Dy2O3)x films first increased, then decreased with x increasing. The average transmission of Dy2O3 doped zinc oxide films in the visible range is above 90%.  相似文献   

16.
Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu2−xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.  相似文献   

17.
TiO2 and Pt doped TiO2 thin films were grown by pulsed laser deposition on 〈0 0 1〉 SiO2 substrates. The doped films were compared with undoped ones deposited in similar experimental conditions. An UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser was used for the irradiation of the TiO2 or Pt doped TiO2 targets. The substrate temperatures were fixed during the growth of the thin films at values within the 300-500 °C range. The films’ surface morphology was investigated by atomic force microscopy and their crystalline quality by X-ray diffractometry. The corresponding transmission spectra were recorded with the aid of a double beam spectrophotometer in the spectral range of 400-1100 nm. No contaminants or Pt segregation were detected in the synthesized anatase phase TiO2 thin films composition. Titania crystallites growth inhibition was observed with the increase of the dopant concentration. The average optical transmittance in the visible-infrared spectral range of the films is higher than 85%, which makes them suitable for sensor applications.  相似文献   

18.
TiO2-doped zinc oxide thin films were deposited on glass substrates by radio frequency (RF) magnetron sputtering with TiO2-doped ZnO targets in an argon atmosphere. The structural properties of TiO2-doped ZnO films doped with different TiO2 contents were investigated. The experimental results show that polycrystalline TiO2-doped ZnO films had the (0 0 2) preferred orientation. The deposition parameters such as the working pressure and substrate temperature of TiO2-doped ZnO films were also investigated. The crystalline structure of the TiO2-doped ZnO films gradually improved as the working pressure was lowered and the substrate temperature was raised. The lowest electrical resistivity for the TiO2-doped ZnO films was obtained when the Ti addition was 1.34 wt%; its value was 2.50 × 10−3 Ω cm, smaller than that found in previous studies. The transmittance of the TiO2-doped ZnO films in the visible wavelength range was more than 80%. The optical energy gap was related to the carrier concentration, and was in the range of 3.30-3.48 eV.  相似文献   

19.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

20.
Amorphous Ge1−xCrx thin films are deposited on (1 0 0)Si by using a thermal evaporator. Amorphous phase is obtained when Cr concentration is lower than 30.7 at%. The electrical resistivities are 1.89×10−3–0.96×102 Ω cm at 300 K, and decrease with Cr concentration. The Ge1−xCrx thin films are p-type. The hole concentrations are 5×1016–7×1021 cm−3 at 300 K, and increase with Cr concentration. Magnetizations are 7.60–1.57 emu/cm3 at 5 K in the applied field of 2 T. The magnetizations decrease with Cr concentration and temperature. Magnetization characteristics show that the Ge1−xCrx thin films are paramagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号