首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A magnetite/oxidized carbon nanotube composite, Fe(3)O(4)@SiO(2)/OCNT, was fabricated in a simple way, and it was successfully used as a magnetic solid-phase extraction sorbent and a significant matrix of the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the detection of benzo[a]pyrene (BaP).  相似文献   

2.
Meng J  Bu J  Deng C  Zhang X 《Journal of chromatography. A》2011,1218(12):1585-1591
In this work, polypyrrole (PPy)-coated Fe(3)O(4) magnetic microsphere were successfully synthesized, and applied as a magnetic sorbent to extract and concentrate phthalates from water samples. The PPy-coated Fe(3)O(4) magnetic microspheres had the advantages of large surface area, convenient and fast separation ability. The PPy coating of magnetic microspheres contributed to preconcentration of phthalates from water sample, due to the π-π bonding between PPy coating and the analytes. Also, the coating could prevent aggregation of the microspheres, and improve their dispersibility. In this study, seven kinds of phthalates were selected as model analytes, including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DNOP), and gas chromatography-mass spectrometry (GC-MS) was introduced to detect the phthalates after sample pretreatment. Important parameters of the extraction procedure were investigated, and optimized including eluting solvent, the amount of Fe(3)O(4)@PPy particles, and extraction time. After optimization, the procedure took only 15 min to extract and concentrate analytes with high efficiency. Validation experiments showed that the optimized method had good linearity (0.985-0.998), precision (3.4-11.7%), high recovery (91.1-113.4%), and the limits of detection were from 0.006 to 0.068 μg/L. The results indicated that the novel method had advantages of convenience, good sensitivity, high efficiency, and it could also be applied successfully to analyze phthalates in real water sample.  相似文献   

3.
In this article, C(18)/NH(2) mixed group modified Fe(3)O(4)/SiO(2) magnetic nanoparticles (Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNPs) were successfully synthesized and used for the extraction of perfluorinated compounds (PFCs) from large volume of water solution. The Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNPs, about 25 nm in diameter, possess high extraction ability to the anionic organic pollutants due to the dual function of hydrophobic octadecyl group and cationic aminopropyl groups at low pH. More than 90% of the targets can be extracted from 500 mL of water solution with 0.1g of the MNP sorbent at pH 3. Twenty min is sufficient to reach adsorption equilibrium, and the targets can be desorbed from the sorbent readily with 12 mL of alkalized methanol after magnetic separation. Simplified extraction procedure could be achieved because of the superparamagnetism and high saturation magnetization of the sorbent (44 emu g(-1)). Therefore, preconcentration of trace level of PFCs from water solution can be performed by using this Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNP sorbent which are stable for multiple reuses.  相似文献   

4.
Long Y  Chen Y  Yang F  Chen C  Pan D  Cai Q  Yao S 《The Analyst》2012,137(11):2716-2722
Triphenylamine (TPA)-functionalized magnetic microspheres (Fe(3)O(4)/SiO(2)/TPA) were prepared and applied as solid phase extraction (SPE) adsorbents for the analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples in combination with high-performance liquid chromatography (HPLC). The magnetic solid-phase extraction (MSPE) conditions affecting the extraction efficiency were optimized, including elution solvent, standing time, amount of sorbent, and salt concentration. Due to the strong π-π conjugate effect between the benzene rings of TPA and PAHs, high extraction efficiency was achieved with spiked recoveries of 80.21-108.33% and relative standard deviations (RSD) of less than 10%. Good linearities (R(2) > 0.997) for all calibration curves were obtained with low limits of detection (LOD) of 0.25, 0.5, 0.5, 3.75, 0.2 and 0.04 ng L(-1) for anthracene, fluoranthene, pyrene, chrysene, benzo[b]fluoranthene and benzo[k]fluoranthene, respectively. The achieved results indicate the applicability of Fe(3)O(4)/SiO(2)/TPA as MSPE adsorbents.  相似文献   

5.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

6.
采用化学共沉淀法成功合成了磁性氮掺杂石墨烯纳米材料, 对其吸附性能进行了初步探讨.此磁性纳米材料对对氯间二甲苯酚的吸附不局限于均匀的单分子层吸附,吸附动力学符合准二级动力学模型.将其作为磁性固相吸附剂,通过对吸附剂用量、超声萃取时间、水样pH值、上样体积等条件的优化,建立了超声辅助磁性固相萃取-气相色谱/串联质谱同时测定环境水样中的三氯生(TCS)、对氯间二甲苯酚(PCMX)、六氯苯(HCB)和2,2′,4,4′,5,5′-六氯联苯(PCB-153) 4种有机氯污染物的方法. 在优化条件下,将6.0 mg Fe3O4/N-G分散于100 mL水样中,调节水样至pH 5,超声萃取15 s,磁性分离,3 mL乙醇和2 mL二氯甲烷分步洗脱,洗脱液氮吹定容,进行气相色谱-质谱联用分析.4种有机污染物在0.1~10 μg/L范围内与峰面积呈良好的线性关系,相关系数为0.9983~0.9999,检出限(S/N=3)和定量限(S/N=10)分别为0.05~0.6 ng/L和0.4~2.4 ng/L,3个加标浓度水平的回收率为68.3%~103.4%,日内、日间测定的相对标准偏差分别为3.3%~6.9%和3.4%~9.4%(n=6).本方法简单方便,易于操作,适用于环境水样中有机氯污染物的检测.  相似文献   

7.
磁性聚苯胺纳米微球的合成与表征   总被引:1,自引:0,他引:1  
报道了具有核壳结构的Fe3O4-聚苯胺磁性纳米微球的合成方法和表征结果.微球同时具有导电性和磁性能.在优化的实验条件下,可得到饱和磁化强度Ms为55.4 emu/g,矫顽力Hc为62 Oe的磁性微球.微球的导电性随着微球中Fe含量的增加而下降.微球的磁性能则随着Fe含量的增加而增大.Fe3O4磁流体的粒径和磁性聚苯胺微球的粒径均在纳米量级.纳米Fe3O4粒子能够提高复合物的热性能.实验表明,磁流体和聚苯胺之间可能存在着一定的相互作用,但这种相互作用较为复杂,难于研究  相似文献   

8.
A novel magnetic solid-phase extraction (MSPE) sorbent, magnetite/silica/poly (methacrylic acid–co-ethylene glycol dimethacrylate) (Fe3O4/SiO2/P(MAA-co-EGDMA)), was developed. This MSPE material was prepared by distillation–precipitation polymerization of MAA and EGDMA in the presence of Fe3O4/SiO2 microspheres with the surface containing abundant reactive double bonds. The resultant sorbent material was characterized by elemental analysis, electron microscopy, X-ray diffraction and Fourier-transformed infrared spectroscopy. In this work, eleven sulfonamides (SAs) were selected as model analytes to validate the extraction performance of this new MSPE sorbent. Noticeably, the extraction can be carried out quickly, the extraction time for the SAs onto Fe3O4/SiO2/P(MAA-co-EGDMA) sorbent can be clearly shortened to 0.5 min. The desorption solution of SAs was analyzed by LC–MS/MS, and the results showed that the recoveries of these compounds were in the range of 87.6–115.6%, with relative standard deviations ranging between 0.9% and 10.8%; the limit of detection were in the range of 0.5–49.5 ng/L.  相似文献   

9.
合成了一种由Fe3 O4磁性纳米粒子(MNPs)和多壁碳纳米管(MWCNTs)组成的复合纳米材料,用于水样中16种邻苯二甲酸酯类化合物(PAEs)的磁固相萃取(MSPE),并结合气相色谱-质谱(GC - MS)法进行定量分析.合成的纳米材料用傅立叶变换红外光谱表征.为提高萃取效率,优化了解析溶剂的种类和用量、解析时间、...  相似文献   

10.
A novel method, modified matrix solid-phase dispersion (MMSPD), has been developed for quantitative analysis of organophosphorus pesticide residues in soil. It was based on matrix solid-phase dispersion (MSPD) and continuous liquid-solid extraction (continuous LSE), using Florisil as sorbent and dichloromethane as the recycling solvent. Two soils with different texture and physicochemical properties were studied to validate the method. The effect of residence time of pesticides in soil was also studied. MMSPD was compared with MSPD and continuous LSE respectively. Determination was carried out by gas chromatography with nitrogen-phosphorus detection (GC-NPD). The method gave recoveries ranging from 72–105% with relative standard deviations (RSDs) lower than 15% for the pesticides studied. The limits of detection (LODs) ranged from 0.1 to 0.6 ng g−1. Two pesticide residues have been detected in real soil samples from Fujian, China, using MMSPD. The pesticides were confirmed by gas chromatography-mass spectrometry (GC-MS) in a selected-ion monitoring (SIM) mode. Revised: 4 and 9 April 2006  相似文献   

11.
A simple method, air‐assisted dispersive micro‐solid‐phase extraction‐based supramolecular solvent was developed for the preconcentration of tramadol in biological samples prior to gas chromatography–flame ionization detection. A new type of carrier liquid, supramolecular solvent based on a mixture of 1‐dodecanol and tetrahydrofuran was combined with layered double hydroxide coated on a magnetic nanoparticle (Fe3O4@SiO2@Cu–Fe–LDH). The supramolecular solvent was injected into the solution containing Fe3O4@SiO2@Cu–Fe–LDH in order to provide high stability and dispersion of the sorbent without any stabilizer agent. Air assisted was applied to enhance the dispersion of the sorbent and solvent. A number of analytical techniques such as Fourier transform‐infrared spectrometry, field emission scanning electron microscope, energy‐dispersive X‐ray spectroscopy and X‐ray diffraction measurements were applied to assess the surface chemical characteristics of Fe3O4@SiO2@Cu–Fe–LDH nanoparticles. The effects of important parameters on the extraction recovery were also investigated. Under optimized conditions, the limits of detection and quantification were obtained in the range of 0.9–2.4 and 2.7–7.5 μg L?1 with preconcentration factors in the range of 450–472 in biological samples. This method was used for the determination of tramadol in biological samples (plasma, urine and saliva samples) with good recoveries.  相似文献   

12.
A low solvent consumption method for the determination of eight ultraviolet (UV) filters, displaying low to medium polarities, in freeze-dried samples of marine bivalves and fish is proposed. Matrix solid-phase dispersion (MSPD) and gas chromatography with mass spectrometry (GC-MS) were used as sample preparation and determination techniques, respectively. This work describes the influence of several parameters (type and amount of dispersant and clean-up sorbents, as well as elution solvent) on the yield and the selectivity of the MSPD extraction. Under optimized conditions, samples (0.5?g) were ground with 2?g of Florisil in a mortar with a pestle and transferred into a polypropylene syringe, which contained 1?g of C18 as clean-up sorbent. Analytes were eluted with 5?mL of acetonitrile. This extract was concentrated to dryness, re-constituted with 1?mL of ethyl acetate and injected in the GC-MS system without any further clean-up. The global average recoveries, measured for three different biota samples, spiked at three different levels (between 50 and 1000?ng?g?1), ranged from 80% to 101% with associated standard deviations below 10%. The inter-day precision of the method varied from 4% to 15% and the achieved LOQs (defined for a signal to noise ratio of 10) ranged from 4 to 28?ng?g?1, referred to the freeze-dried matrix. Octocrylene (OCR) was found in some samples of fish and mussels at concentrations between 15 and 20?ng?g?1, referred to dry mass.  相似文献   

13.
Optimization of extraction and enrichment parameters of chemical warfare agents and their related chemicals from water are presented using multiwalled carbon nanotubes (MWCNTs) as solid-phase extractant. Selected analytes were O,O'-dialkyl alkylphosphonates, nerve agent and mustards. Extraction parameters, including sample volume, nature and volume of washing and eluting solvent, were optimized. Recoveries of analytes were determined by GC-MS and ranged from 81 to 104%. A comparison with C(18), hydrophilic-lipophilic balance and active carbon sorbents demonstrated the superiority of MWCNTs for non-toxic analogues of nerve agents. Optimized conditions involve 40?mg MWCNTs as the sorbent, 5.0?mL water as the washing solvent, 3?mL ethyl acetate as the eluent and sample loading of 10?mL water spiked at 0.1?μg/mL. The limits of detection (LOD) were achieved down to 1 and 0.05?ng/mL in full scan and selected ion-monitoring modes, respectively.  相似文献   

14.
A sensitive analytical method to concentrate and determine extensively used UV filters in cosmetic products at (ultra)trace levels in water samples is presented. The method is based on a sample treatment using dispersive solid-phase extraction (dSPE) with laboratory-made chemisorbed oleic acid-coated cobalt ferrite (CoFe(2)O(4)@oleic acid) magnetic nanoparticles (MNPs) as optimized sorbent for the target analytes. The variables involved in dSPE were studied and optimized in terms of sensitivity, and the optimum conditions were: mass of sorbent, 100mg; donor phase volume, 75 mL; pH, 3; and sodium chloride concentration, 30% (w/v). After dSPE, the MNPs were eluted twice with 1.5 mL of hexane, and then the eluates were evaporated to dryness and reconstituted with 50 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for the injection into the gas chromatography-mass spectrometry (GC-MS). Under the optimized experimental conditions the method provided good levels of repeatability with relative standard deviations below 16% (n=5, at 100 ng L(-1) level). Limit of detection values ranged between 0.2 and 6.0 ng L(-1), due to the high enrichment factors achieved (i.e., 453-748). Finally, the proposed method was applied to the analysis of water samples of different origin (tap, river and sea). Recovery values showed that the matrices under consideration do not significantly affect the extraction process.  相似文献   

15.
Huo SH  Yan XP 《The Analyst》2012,137(15):3445-3451
The unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities and the availability of in-pore functionality and outer-surface modification make metal-organic frameworks (MOFs) attractive for diverse analytical applications. However, integration of MOFs with magnets for magnetic solid-phase extraction for analytical application has not been attempted so far. Here we show a facile magnetization of MOF MIL-101(Cr) for rapid magnetic solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. MIL-101 is attractive as a sorbent for solid-phase extraction of pollutants in aqueous solution due to its high surface area, large pores, accessible coordinative unsaturated sites, and excellent chemical and solvent stability. In situ magnetization of MIL-101 microcrystals as well as magnetic solid-phase extraction of PAHs was achieved simultaneously by simply mixing MIL-101 and silica-coated Fe(3)O(4) microparticles in a sample solution under sonication. Such MOF-based magnetic solid-phase extraction in combination with high-performance liquid chromatography gave the detection limits of 2.8-27.2 ng L(-1) and quantitation limits of 6.3-87.7 ng L(-1) for the PAHs. The relative standard deviations for intra- and inter-day analyses were in the range of 3.1-8.7% and 6.1-8.5%, respectively. The results showed that hydrophobic and π-π interactions between the PAHs and the framework terephthalic acid molecules, and the π-complexation between PAHs and the Lewis acid sites in the pores of MIL-101 play a significant role in the adsorption of PAHs.  相似文献   

16.
An effective magnetic solid-phase extraction method was proposed using magnetic graphene oxide coated with poly(2-aminoterephthalic acid-co-aniline) as a sorbent for preconcentration and extraction of organophosphorus pesticides from environmental water and apple juice samples, and determined using the gas chromatography-mass spectrometry analysis. To approve the successful synthesis of the magnetic nanocomposite, the prepared sorbent was characterized by field emission scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer, and Fourier transforms infrared techniques. The main parameters affecting the extraction efficiency were considered and studied to afford an optimized procedure. Systematic method validation verified its suitable recoveries (89.4–107.3%), and precision (relative standard deviations < 6.8%). The method showed a wide linear dynamic range (0.04–700 ng/mL) with low limits of detection (0.01–0.06 ng/mL) and quantification (0.04–0.21 ng/mL). This method presented good potential and great sensitivity for the pesticides determination.  相似文献   

17.
磁性Fe3O4微粒表面有机改性   总被引:23,自引:1,他引:23  
在分散聚合法制备复合磁性微球过程中,采用硅烷偶联剂KH 570对磁性Fe3O4微粒进行表面改性.红外光谱(FTIR)、光电子能谱(XPS)分析结果表明,偶联剂与磁性微粒表面以化学键形式结合.改性后,Fe3O4微粒与单体及其聚合物之间具有良好的亲和性,采用改性后的磁性微粒可以显著改善磁性微球的性能指标.  相似文献   

18.
Meng J  Shi C  Wei B  Yu W  Deng C  Zhang X 《Journal of chromatography. A》2011,1218(20):2841-2847
In this work, core-shell structure Fe(3)O(4)@C@polyaniline magnetic microspheres were synthesized using simple hydrothermal reactions. The carbon-coated magnetic microspheres (Fe(3)O(4)@C) were first synthesized by a hydrothermal reaction, and then aniline was polymerized on the magnetic core via another hydrothermal reaction. Then, the obtained Fe(3)O(4)@C@polyaniline magnetic microspheres were applied as magnetic adsorbents for the extraction of aromatic molecules due to π-π interactions between polyaniline shell and aromatic compounds. In our study, five kinds of phenols including phenol, 2,4-dichlorophenol (DCP), 2,4,5-trichlorophenol (TCP), pentachlorophenol (PCP) and bisphenol A (BPA) were selected as the model analytes to verify the extraction ability of Fe(3)O(4)@C@PANI microspheres. After derivatization, the phenols were detected using gas chromatography-mass spectrometry (GC-MS). The dominant parameters affecting enrichment efficiency were investigated and optimized. Under the optimal conditions, the proposed method was evaluated, and applied to the analysis of phenols in real water samples. The results demonstrated that our proposed method based on Fe(3)O(4)@C@polyaniline magnetic microspheres had good linearity (r(2)>0.991), and limits of quantification (2.52-29.7 ng/mL), high repeatability (RSD<13.1%) and good recovery (85.3-110.6%).  相似文献   

19.
A graphene-based magnetic nanocomposite (graphene-ferriferrous oxide; G-Fe(3) O(4) ) was synthesized and used as an effective adsorbent for the preconcentration of some triazole fungicides (myclobutanil, tebuconazole, and hexaconazole) in environmental water samples prior to high-performance liquid chromatography-ultraviolet detection. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid the time-consuming experimental procedures commonly involved in the traditional solid phase extraction such as centrifugation and filtrations. Various experimental parameters affecting the extraction efficiencies such as the amount of the magnetic nanocomposite, extraction time, the pH values of the sample solution, salt concentration, and desorption conditions were investigated. Under the optimum conditions, the enrichment factors of the method for the three analytes were 5824, 3600, and 4761, respectively. A good linearity was observed in the range of 0.1-50 ng/mL for tebuconazole and 0.05-50 ng/mL for myclobutanil and hexaconazole, respectively, with the correlation coefficients ranging from 0.9992 to 0.9996. The limits of detection (S/N = 3) of the method were between 0.005 and 0.01 ng/mL. The results indicated that as a magnetic solid-phase extraction adsorbent, the graphene-ferriferrous oxide (G-Fe(3) O(4) ) has a great potential for the preconcentration of some compounds from liquid samples.  相似文献   

20.
A simple and sensitive method for determining anatoxin-a in aqueous samples was developed using solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC-MS) detection. Three forms of polyaniline (PANI) films and a single form of polypyrrole (PPY) film were prepared and applied for SPME. The extraction properties of these films to anatoxin-a were examined and it was shown that leucoemeraldine form of PANI displayed a better selectivity to this compound. SPME conditions were optimized by selecting the appropriate extraction parameters, including type of coating (leucoemeraldine form of PANI at 32 microm thicknesses), salt concentration (10%, w/v), time of extraction (30 min) and stirring rate (1000 rpm). The calibration curve was linear in the range from 50 to 10,000 ng/ml, with the detection limit (S/N = 3) of 11.2 ng/ml. This method was successfully applied for the analysis of anatoxin-a in the cultured media of two species of cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号