首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermal stability of the bovine whey proteins.; β-lactoglobulin (β-1g), α-lactalbumin (α-1a) and serum albumin (BSA) was studied individually and in mixtures in the temperature range 25–140°C by differential scanning calorimetry. The thermal denaturation temperature (TD) and the transition enthalpies (ΔHapp) were determined at different pH-values (3.0–10.0) in simulated milk ultrafil-trate (SMUF).β-Lg was, except at pH 9.0 and 10.0, the most thermostable protein at all pH-values. At acidic pH-values BSA was the least thermostable. At alkaline pH-values, however, α-la had lower thermal stability than BSA. α-La exhibited double peak behaviour at acidic pH-values and ΔHapp was dependent on Ca-content. Mixtures of the proteins were studied at pH 4.0, 5.0 and 6.6. In general, when mixed, the proteins seemed to denaturate independently of each other.  相似文献   

2.
Two capillary isoelectric focusing (CIEF) systems have first been optimized: one uses a bare silica capillary and 30% (v/v) of glycerol in the separation medium while the other uses a coated capillary and an aqueous background electrolyte. To perform permanent capillary coating, two neutral polymers have been compared: hydroxypropylcellulose (HPC) and polyvinylalcohol (PVA). HPC coating gave best results for electroosmotic flow (EOF) limitation on a wide pH range: as compared to a bare silica capillary, it allowed to decrease EOF by 96% at pH 7.2 after acidic and basic treatments, whereas PVA coating lead only to a 76% decrease. The glycerol CIEF system was more satisfying for the separation of model proteins classically used as pI markers. Finally, the use of "narrow pH cuts" of carrier ampholytes added to commercial ampholyte mixtures allowed increasing resolution up to a factor 2.4 at a chosen pH for the separation of pI markers and milk proteins.  相似文献   

3.
Two major milk whey proteins, β-lactoglobulin and α-lactalbumin, are among the main cow milk allergens and can cause allergy even at a very low concentrations. Therefore, these proteins are interesting targets in food analysis, not only for food quality control but also for highlighting the presence of allergens. Herein, a sensitive analysis for β-lactoglobulin and α-lactalbumin was developed using immunoaffinity capillary electrophoresis hyphenated with MALDI-MS. Magnetic beads functionalized with appropriate antibodies were used for β-lactoglobulin and α-lactalbumin immunocapture inside the capillary. After elution from the beads, analyte focusing and separation were performed by transient isotachophoresis followed by MALDI-MS analysis performed through an automated iontophoretic fraction collection interface. A LOD in the low nanomolar range was attained for both whey proteins. The method developed was further applied to the analysis of different milk samples including fortified soy milk.  相似文献   

4.
Affinity capillary electrophoresis was used to study quantitatively the noncovalent interactions between β-lactoglobulin (β-LG), a milk whey protein, and two lantibiotics, nisin (a dairy biopreservative lantibiotic) and duramycin (a bovine mastitis treatment lantibiotic). The study involved measuring the change in effective electrophoretic mobility of the lantibiotic as the concentration of β-LG in the background electrolyte is increased. Nonlinear regression analysis was used to model the dependence of the effective mobility of the lantibiotic on β-LG concentration in the BGE. Using this approach, binding constants were determined to be 3.1 (±0.2) × 108 M?1 for nisin and 2.2 (±0.1) × 108 M?1 for duramycin. Both binding constants were comparable indicating the similarity of affinity properties of nisin and duramycin towards β-LG. These results demonstrate that affinity capillary electrophoresis is a suitable method for characterizing the interaction between lantibiotics and β-LG.  相似文献   

5.

Affinity capillary electrophoresis was used to study quantitatively the noncovalent interactions between β-lactoglobulin (β-LG), a milk whey protein, and two lantibiotics, nisin (a dairy biopreservative lantibiotic) and duramycin (a bovine mastitis treatment lantibiotic). The study involved measuring the change in effective electrophoretic mobility of the lantibiotic as the concentration of β-LG in the background electrolyte is increased. Nonlinear regression analysis was used to model the dependence of the effective mobility of the lantibiotic on β-LG concentration in the BGE. Using this approach, binding constants were determined to be 3.1 (±0.2) × 108 M−1 for nisin and 2.2 (±0.1) × 108 M−1 for duramycin. Both binding constants were comparable indicating the similarity of affinity properties of nisin and duramycin towards β-LG. These results demonstrate that affinity capillary electrophoresis is a suitable method for characterizing the interaction between lantibiotics and β-LG.

  相似文献   

6.
建立了毛细管电泳法分析α-乳白蛋白、β-乳球蛋白A及β-乳球蛋白B的方法,考察了不同浓度冰乙酸(HAc)及三氯乙酸(TCA)对原料奶、婴儿配方奶粉A和B及酸奶中蛋白的去除效果。结果表明,TCA去除蛋白效果优于HAc,不同样品所需TCA浓度不同:2g原料奶需3mL100g/LTCA;0.5g婴儿配方奶粉A和B分别需5mL10g/L及20g/LTCA;2g酸奶则需3mL20g/LTCA才能将蛋白完全沉淀。为原料奶、婴儿配方奶粉及酸奶等乳制品的样品前处理提供了有价值的参考。  相似文献   

7.
Jin Y  Luo G  Oka T  Manabe T 《Electrophoresis》2002,23(19):3385-3391
Synthetic UV-detectable peptide pI markers were used to estimate isoelectric point (pI) values of proteins separated by capillary isoelectric focusing (CIEF) followed by cathodic mobilization in the absence of denaturing agents. The pI calculation and quantitative analysis of purified proteins showed the feasibility of these peptides as pI markers and internal standards in CIEF separation of proteins. Estimation of pI values of major proteins in human plasma was performed using the peptide pI markers, and the values were compared with those previously obtained by gel isoelectric focusing (IEF). Sera of immunoglobulin G (IgG) myeloma patients, which showed characteristic peaks of myeloma IgG in their CIEF patterns, were also subjected to the analysis and the pI values of the myeloma proteins have been estimated.  相似文献   

8.
建立了同时分离和测定牦牛乳中4种酪蛋白和4种乳清蛋白的反相高效液相色谱方法。脱脂牦牛乳经分散剂处理后,采用C4色谱柱(250 mm×4.6 mm,300,5μm i.d.)进行分离,以0.1%的三氟乙酸水溶液和0.1%的三氟乙酸乙腈溶液为流动相,流速为0.8 mL/min,梯度洗脱,二极管阵列检测器(DAD)在220nm波长下检测,外标法定量。结果表明,牦牛乳中8种主要蛋白质在40 min内完全分离,在各自的线性范围内呈良好线性,除α-乳白蛋白外,其余7种蛋白的相关系数均大于0.99。8种蛋白质的回收率为86%~103%,相对标准偏差(RSDs)为1.7%~8.7%;检出限(LODs)为10.7~39.2 mg/L,定量下限(LOQs)为35.7~130.7 mg/L。该方法的准确度和精密度均较高,能够满足实际检测的要求。  相似文献   

9.
Six amino acids with pIs that ranged from 3.2 to 9.7 were used as ampholytes to establish a pH gradient in capillary isoelectric focusing. This amino acid-based capillary isoelectric focusing (cIEF) was coupled with ESI-MS/MS using an electrokinetically pumped sheath-flow interface for peptide analysis. Amino acid-based isoelectric focusing generates a two-order of magnitude lower background signal than commercial ampholytes in the important m/z range of 300–1800. Good focusing was achieved for insulin receptor, which produced ∼10 s peak width. For 0.1 mg mL−1 bovine serum albumin (BSA) digests, 24 ± 1 peptides (sequence coverage 47 ± 4%) were identified in triplicate analysis. As expected, the BSA peptides were separated according to their pI. The concentration detection limit for the BSA digests is 7 nM and the mass detection limit is 7 fmole. A solution of six bovine protein tryptic digests spanning 5 orders of magnitude in concentration was analyzed by amino acid based cIEF-ESI-MS/MS. Five proteins with a concentration range spanning 4 orders of magnitude were identified in triplicate runs. Using amino acid based cIEF-ESI-MS/MS, 112 protein groups and 303 unique peptides were identified in triplicate runs of a RAW 264.7 cell homogenate protein digest. In comparison with ampholyte based cIEF-ESI-MS/MS, amino acid based cIEF-ESI-MS/MS produces higher resolution of five acidic peptides, much cleaner mass spectra, and higher protein spectral counts.  相似文献   

10.
Sixteen peptides (trimers to hexamers) were designed for use as a set of pI markers for capillary isoelectric focusing (CIEF). Each peptide contains one tryptophan residue for detection by UV absorption and other amino acid residues having ionic side chains, which are responsible for focusing to its pI. The pIs of these peptides were determined by slab-gel IEF using commercial carrier ampholytes. The focused peptides in the gel were detected by absorption measurement at 280 nm using a scanning densitometer and the pH gradient was determined by measuring the pH of the gel using an oxidized metal membrane electrode. The pI values of the peptides ranged from 3.38 to 10.17. The obtained values agreed well with the predicted ones, which were calculated based on amino acid compositions, with root mean square differences of 0.15 pH unit. The peptides were detected at 280 nm as very sharp peaks when separated by CIEF. The pI values of some standard proteins were redetermined by CIEF by using this set of peptide pI markers and the values agreed closely with those reported previously. The sharp focusing, stability, high purity and high solubility of these synthetic pI markers should facilitate the profiling of a pH gradient in a capillary and the determination of the pI values of proteins.  相似文献   

11.
We prepared a series of low-molecular-mass fluorescent ampholytes with narrow pI range. These fluorescein-based ampholytes are detection compatible with argon laser-induced fluorescence (LIF) detection. The selected properties, important for their routine use as fluorescent pI markers, were examined. The pI values of new fluorescein-based pI markers were determined by capillary isoelectric focusing (CIEF) using currently available low-molecular-mass pI markers for CIEF with photometric detection. The examples of CIEF with fluorometric detection of new compounds together with fluorescein isothiocyanate (FITC) derivatized proteins are presented.  相似文献   

12.
This paper presents an imaging capillary isoelectric focusing (CIEF) assay for the determination of the identity, stability, and isoform distribution of a murine monoclonal antibody (MU-B3). The experiments were conducted using a Convergent Bioscience iCE280 instrument. The optimum carrier ampholyte composition that gave the best peak separation was found to be 25% Pharmalyte pH 3-10 and 75% Pharmalyte pH 5-8. The antibody gave a highly reproducible CIEF profile with three major peaks having average isoelectric point (pI) values of 6.83, 6.99, and 7.11. Intraday and interday reproducibility of pI values was found to be within RSD of 0.5%. The CIEF profile was also the same, with an alternate column cartridge and alternate batches of methyl cellulose. A plot of peak areas versus MU-B3 concentration was linear (R2 = 0.995) up to a concentration of 0.5 mg/mL in the sample solution. Peak area measurements were reproducible to within 7% RSD. The CIEF profiles of two other antibodies were distinctly different from the profile of MU-B3, showing that the assay is specific. After a sample of MU-B3 was subjected to heat stress by exposure to heat at 55 degrees C for 4 h, its CIEF profile was altered with extra peaks appearing at lower pI values, indicating that the assay could be used to monitor stability. The result of the heat stress experiment was also confirmed with a parallel slab-gel IEF analysis of the antibody sample before and after application of the heat stress. The results of this work suggest that imaging CIEF can be used for product testing under a quality control environment. The assay can be used for pI profiling of proteins and for monitoring structural changes (deamidation, glycosylation, etc.) during the manufacturing process and upon storage.  相似文献   

13.
X Z Wu  S K Sze  J Pawliszyn 《Electrophoresis》2001,22(18):3968-3971
Miniaturization of whole-column imaging capillary isoelectric focusing (CIEF) is discussed. A 1.2 cm capillary was used as a separation column for CIEF. The experimental results for the analysis of two pI markers and the protein myoglobin showed that good CIEF separation results could be obtained. Secondly, a light-emitting diode (LED) was used as the light source for the whole-column absorbance imaging detection. The focusing of both the pI markers and myoglobin were observed with the LED light source. The whole-column imaging CIEF instrument was simplified and miniaturized by the use of the LED. Further developments are also discussed.  相似文献   

14.
A simple, sensitive and precise reverse phase liquid chromatographic method has been developed and validated for quantification of bovine serum albumin (BSA), α-lactalbumin (α-La) and β–lactoglobulin (β-Lg) that are removed from whey waste by foam fractionation method. The data is reproducible over a wide concentration range. This optimized method allowed analysis of BSA, α-La, β-Lg in a mixture within 5 min and could be applied to the analysis of a variety of commercial and laboratory whey products within a short time.  相似文献   

15.
The non-availability of commercial carrier ampholytes in the pH range greater than 11 has contributed to difficulties in focusing and resolving highly basic proteins/peptides using capillary isoelectric focusing (cIEF). Two different approaches, involving the use of N,N,N',N'-tetramethylethylenediamine (TEMED) and ampholyte 9-11, are investigated for their effects on the extension of separation range in cIEF. The addition of TEMED into pharmalyte 3-10 not only prevents the peptides/proteins from focusing in sections of the capillary beyond the detection point, but also extends the separation range to at least isoelectric point (pI) 12. The combination of ampholyte 9-11 with pharmalyte 3-10 surprisingly provides baseline resolution between bradykinin (pI 12) and cytochrome c (pI 10.3). The sample mixture, containing bradykinin, the high-pI protein calibration kit (pI 5.2-10.3), and cytochrome c digest, is employed to demonstrate the cIEF separation of proteins and peptides over a wide pH range of 3.7-12.  相似文献   

16.
Zhou F  Johnston MV 《Electrophoresis》2005,26(7-8):1383-1388
An automated system for intact protein analysis is described that combines capillary isoelectric focusing (CIEF), reversed-phase liquid chromatography (RPLC), and electrospray ionization-mass spectrometry (ESI-MS). Performance is demonstrated with a complex yeast enzyme concentrate. CIEF is performed with a microdialysis membrane-based cathodic cell that permits pI fractions to be sampled and stored for subsequent LC-MS analysis. A total of 50 microg protein is loaded onto the capillary. Ten fractions are stored which span the pI range 3-10. Each fraction is subsequently cleaned on a reversed-phase trap column and then characterized by LC-MS. MaxEnt1 is used to deconvolute the raw mass spectra to obtain the molecular weight (MW) of intact proteins/peptides in the sample. A two-dimensional display of pI vs. MW is illustrated for the 500 most prevalent species as identified by MaxEnt1.  相似文献   

17.
A sensitive and specific method for the quantitative determination of zearalenone (ZEN) and its major metabolites (α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) in animal plasma using liquid chromatography combined with heated electrospray ionization (h-ESI) tandem mass spectrometry (LC–MS/MS) and high-resolution Orbitrap® mass spectrometry ((U)HPLC–HR–MS) is presented. The sample preparation was straightforward, and consisted of a deproteinization step using acetonitrile. Chromatography was performed on a Hypersil Gold column (50 mm × 2.1 mm i.d., dp: 1.9 μm, run-time: 10 min) using 0.01% acetic acid in water (A) and acetonitrile (B) as mobile phases.  相似文献   

18.
β,β-Dihalo- and β,β,β-trichloroamines, obtained by Lewis acid-promoted Petasis-type reaction of α,α-dichlorinated and α,α,α-trichlorinated imines or reduction of α,α-dihaloaldimines, were subjected to a reactivity study and turned out to be remarkably stable compounds. In general, only the bases KOtBu and NaOMe cause a 1,2-dehydrochlorination with formation of unsaturated α-chloroimines or unsaturated α,α-dichloroimines. Hydrolysis of the α-chloroimines with aqueous oxalic acid resulted in the formation of the corresponding unsaturated α-chloroketones. The reaction of simple β,β-dihaloamines with NaOMe and KOtBu generated 2-haloprop-2-enylmines and 2,2-dimethoxypropylamines.  相似文献   

19.
Capillary isoelectric focusing (CIEF) separations are usually performed with neutral coated fused-silica capillaries in aqueous anticonvective media. Glycerol, a very viscous solvent (eta = 945 mPa x s at 25 degrees C), known to help stabilize any kind of proteins and solubilize hydrophobic ones, was tested as an alternative to using commercial gels. Viscosity and electroosmotic mobility were measured as a function of gel or glycerol content in water, and a 30:70 v/v glycerol-water medium appeared as a good compromise for performing CIEF in a bare fused-silica capillary without imposing too high a viscosity. To demonstrate the feasibility of this new CIEF system, a standard mixture of nine model proteins was separated according to their pI with a good agreement between experimental and literature aqueous pIs. Moreover, better resolution was achieved with this system than with the conventional aqueous CIEF system, as two of the model proteins could not be separated in the latter system. Glycerol-water CIEF in bare silica capillary was next applied to the separation of horse radish peroxidase, a complex mixture of protein isoforms. The good concordance with the separation obtained by the conventional CIEF system indicated the adequacy of this new system. Finally, as anticipated from the results obtained for the separation of bacteriorhodopsin, a membrane protein, glycerol-water CIEF performed in bare silica capillary appears to be a promising alternative to conventional aqueous CIEF for hydrophobic protein characterization, under their native form.  相似文献   

20.
Graf M  Wätzig H 《Electrophoresis》2004,25(17):2959-2964
Capillary isoelectric focusing (CIEF) is an important tool for the quality assurance of biotechnologically maintained drugs and for proteome analysis. The critical performance parameters of this technique are the precisions of isoelectric point (pI) values and peak areas. Compared to capillary zone electrophoresis (CZE), where precise results can be obtained (e.g., 0.5% relative standard deviation (RSD) for peak areas, n = 60), only few data are available for CIEF experiments. So far, reproducible data of pI values (RSD = 0.5%) have been acquired, but peak areas show inferior results (about 3-15% RSD). Nonstable capillary coatings and protein adsorption have been discussed as possible reasons. Recent work of Righetti et al. [25, 27] has proven that the use of coated capillaries can reduce the adsorption of proteins by 50% but cannot prevent it. In our CIEF experiments irregular and poorly reproducible peak patterns have been observed. In a long-time experiment of 106 repeated runs, an overall RSD of 10% was obtained for peak areas, RSD of 2% only in series of about 10 consecutive replicates. Especially at higher concentrations the reproducibility deteriorates. This seems to be the result of a self-amplifying process, induced by adsorbed protein molecules, leading to further agglomerations. CZE control experiments in linear polyacrylamide (LPA)-coated capillaries proved a strong pH dependency of these effects within a small range. Compared to bare fused-silica surfaces, adsorption effects are reduced but not inhibited. An enhancement of reproducibility in CIEF experiments can be achieved only by controlling the interactions of proteins and capillary walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号