首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Glassy carbon (GC) was implanted by 150 keV Co+ ions to the doses of 1×1016 (low dose) and 1×1017 ions/cm2 (high dose). The low dose implantation results in GC structure disordering with formation of amorphous carbon (a-C). Analysis of Rutherford backscattering (RBS) and Raman spectra has revealed 15 at.% of sp3-bonded C atoms in the a-C structure. The in-pane size of sp2 clusters was estimated to be 1.1 nm. On the contrary, the high dose ion implantation results in ordering of the a-C structure. Content of the sp3 atoms in a-C was reduced to about 5% and, respectively, the in-plane sp2 cluster size was increased up to 2.8 nm. Together with the a-C structure ordering the Raman spectra identifies formation of transpolyacetylene (TPA)-like chains after the high-dose Co+ implantation. In parallel, RBS suggests an enhanced diffusion of the implanted cobalt within the modified carbon layer. Correlation of the RBS and Raman results argues a driving role of cobalt diffusion in the TPA-like chains formation and a-C ordering. Great surface roughening observed after the high dose Co+ implantation suggests also the pronounced cobalt clustering causing large flux of “free volume” to the surface.  相似文献   

2.
类金刚石膜不同能量下的离子注入   总被引:3,自引:0,他引:3       下载免费PDF全文
本文对等离子体气相沉积法制备的类金刚石膜(a-C:H)进行了离子注入研究。注入剂量固定为5×105Ar/cm2,注入能量分别为50,100,140和180keV。离子注入前后分别作了红外吸收谱,Raman谱,光学能隙,氢含量和电阻率的测量。结果表明,注入离子破坏了膜中的C—H键,sp2和sp3态都减少,而(sp2/sp3)比值增大;光学能隙Eopt,电阻 关键词:  相似文献   

3.
ZnS nanocrytsals of size ∼2.5 nm were prepared by chemical precipitation technique. Pressed pellets of nanostructured ZnS were implanted with He+ ions at doses of 5 × 1014, 1 × 1015 and 5 × 1015 ions/cm2. Raman spectra of both unimplanted and He+ ion implanted samples were recorded with ultraviolet (UV) excitation. LO, 2LO, 2TO, (LO + TA) and (2TO − TA) modes of ZnS were observed in the resonance Raman spectra of the unimplanted nanostructured ZnS samples. In addition, a surface mode was observed at 294 cm−1. With the implantation of He+ ions, the 2TO mode disappeared and 2LO mode became prominent and this observation was attributed to the decrease in band gap of ZnS nanocrytsals due to ion implantation. The exciton–LO phonon coupling strength was determined from the intensity ratio of 2LO to LO modes and it was observed that the exciton–LO phonon coupling strength increases with increase in implantation dose. In the present work, we report for the first time the observation of 2TO mode in the resonance Raman spectrum of nanostructured ZnS and also the modification of exciton–LO phonon coupling strength of semiconductor nanoparticles by ion implantation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Transparent polycarbonate samples were implanted with 1 MeV Ag+ ions to various doses ranging from 5 × 1014 to 3 × 1016 ions cm?2 with a beam current density of 900 nA cm?2. Modification in the structure of polycarbonate as a function of the implantation fluence was investigated using micro-Raman spectroscopy, glancing angle X-ray diffraction, and UV-Vis spectroscopy. Raman spectroscopy pointed toward the formation of graphite structures/clusters due to the ion implantation. UV-Vis absorption analysis suggests the formation of a carbonaceous layer and a drastic decrease in optical band gap from 4.12 eV to 0.50 eV at an implanted dose of 3 × 1016 ions cm?2. The correlation between the decrease in band gap and the structural changes is discussed.  相似文献   

5.
ABSTRACT

In the present work, effects of silicon negative ion implantation into semi-insulating gallium arsenide (GaAs) samples with fluences varying between 1?×?1015 and 4?×?1017?ions?cm?2 at 100?keV have been described. Atomic force microscopic images obtained from samples implanted with fluence up to 1?×?1017?ion?cm?2 showed the formation of GaAs clusters on the surface of the sample. The shape, size and density of these clusters were found to depend on ion fluence. Whereas sample implanted at higher fluence of 4?×?1017?ions?cm?2 showed bump of arbitrary shapes due to cumulative effect of multiple silicon ion impact with GaAs on the same place. GXRD study revealed formation of silicon crystallites in the gallium arsenide sample after implantation. The silicon crystallite size estimated from the full width at half maxima of silicon (111) XRD peak using Debye-Scherrer formula was found to vary between 1.72 and 1.87?nm with respect to ion fluence. Hall measurement revealed the formation of n-type layer in gallium arsenide samples. The current–voltage measurement of the sample implanted with different fluences exhibited the diode like behavior.  相似文献   

6.
Among the family of rare earth (RE) dopants, the doping of first member Ce into GaN is the least studied system. This article reports structure properties of Ce‐doped GaN realized by technique of ion implantation. Ce ions were implanted into metal organic chemical vapor deposition grown n‐ and p‐GaN/sapphire thin films at doses 3 × 1014 and 2 × 1015 cm−2. X‐ray diffraction scans and Raman scattering measurements exhibited expansion of lattice in the implanted portion of the samples. First order Raman scattering spectra show appearance of several disorder‐activated Raman scattering modes in addition to typical GaN features. A dose‐dependent decrease in intensity of E2 mode was observed in Raman the spectra of the implanted samples. Ultraviolet Raman spectra of implanted samples show complete quenching of photoluminescence emission and appearance of multiple A1(LO) phonon scattering modes up to fifth order. Moreover, a decrease in intensity and an increase in line width of LO modes as a function of wavenumber were observed for implanted samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The irradiation‐induced damages and structure modifications of rare earths doped powellite single crystal have been precisely studied using optical and electron microscopy techniques, including optical interferometry, confocal micro‐Raman spectroscopy and transmission electron microscopy. The surface of powellite crystal pops out anisotropically after exposing under Ar ion beam, with a saturation swelling value of 2.0% along a‐axis and 1.3% along the c‐axis of powellite at high dose. Raman mapping on focused ion‐beam sections (5 × 3 µm2) perpendicular to the irradiated surface reveals that irradiation damage induces orientation‐dependent compressive stresses in powellite. However, no significant anisotropic effect has been found on the irradiation‐induced structural disorder in powellite. At low dose (0.012 dpa), the main irradiation‐induced defects created in powellite crystal are small defect clusters. By comparison, the dominant kinds of defects in high‐dose (5.0 dpa) sample are dislocations loops and networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
《Composite Interfaces》2013,20(2-3):229-238
Physical and chemical properties changes in a polymer have been studied for polycarbonate (PC) implanted with 100 keV Ni+ ions with varying fluence from 1 × 1014 to 1 × 1016 ions/cm2. The changes in the surface morphology and composition have been observed with atomic force microscopy (AFM) and X-ray diffraction (XRD). The ions implanted induce changes in topography of PC and indicate that the roughness increases dramatically with ion fluence. Implanted metal ions shows direct evidence of compound formation on the surface. The chemical changes in the surface region have been carried out by Raman Spectroscopy and UV-VIS spectroscopy. UV-VIS absorption analysis indicates a drastic decline in optical band gap from 5.46 eV to 1.76 eV at an implanted dose of 1 × 1016 ions/cm2. It could be shown that the partial destruction of chemical bonding under ion implantation leads to the creation of new amorphous and graphite-like structures, which is confirmed by Raman spectroscopy.  相似文献   

9.
《Physics letters. A》2001,286(5):332-337
The weak damage induced by 0.8 MeV Si ion implantation in the Al0.25Ga0.75As films epitaxially grown on GaAs substrates was studied by using Rutherford backscattering spectrometry/channeling (RBS/C) and Raman spectroscopy. RBS/C spectra measured from the implanted samples showed rather low damage level induced by the ion implantation with ion dose from 1×1014 to 5×1015 cm−2. The Raman spectra were measured on these samples. Two kinds of phonon modes, GaAs-like and AlAs-like, are observed, which indicate the existence of multiple phonon vibrational modes in the epitaxial Al0.25Ga0.75As films on the GaAs substrate. Compared with the unimplanted sample, the Raman photon peaks for the implanted sample shift gradually to lower energy with the increase of the implantation dose. The strains induced in the implanted layer were also evaluated from the Raman spectra. The result from high resolution double crystal X-ray diffractometry (HRXRD) also verified the evolution of the strains in the implanted layers.  相似文献   

10.
Amorphous carbon films (a-C:H) and nitrogen incorporated carbon films [a-C:H(N)] deposited by a self-bias glow discharge have been implanted with 70 keV nitrogen ions at fluences of 0.6, 1 and 2×1017 N/cm2. The in-depth modifications caused by ion implantation were determined by means of nuclear techniques, such as Rutherford Backscattering Spectrometry (RBS), Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA), as well as by Auger Electron Spectroscopy (AES) and Raman scattering. ERDA profiles show that nitrogen implantation causes hydrogen depletion, the amount of which depends on the film composition and on the ion fluence. In a-C:H(N) films nitrogen loss was also measured. The induced structural modifications in both a-C:H and a-C:H(N) films were followed by both AES, using factor analysis, and microprobe Raman spectroscopy. They turn out to be related to the energy deposited by the incident ions. Our results indicate that the ion-beam bombardment causes in both a-C:H and a-C:H(N) films an increase of either the degree of disorder or the ratio between sp2/sp3 bonds across the hydrogen-depleted layer, which depends on the ion fluence.  相似文献   

11.
Nonresonance (or normal) Raman scattering (NRS), resonance Raman scattering (RRS), surface‐enhanced Raman scattering (SERS), and surface‐enhanced RRS (SERRS) spectra of [Fe(tpy)2]2+ complex dication (tpy = 2,2':6',2''‐terpyridine) are reported. The comparison of RRS/NRS and SERRS/SERS excitation profiles of [Fe(tpy)2]2+ spectral bands in the range of 445–780 nm is supported by density functional theory (DFT) calculations, Raman depolarization measurements, comparison of the solid [Fe(tpy)2](SO4)2 and solution RRS spectra, and characterization of the Ag nanoparticle (NP) hydrosol/[Fe(tpy)2]2+ SERS/SERRS active system by surface plasmon extinction spectrum and transmission electron microscopy image of the fractal aggregates (D = 1.82). By DFT calculations, both the Raman active modes and the electronic states of the complex have been assigned to the symmetry species of the D2d point group. It has been demonstrated that upon the electrostatic bonding of the complex dication to the chloride‐modified Ag NPs, the geometric and ground state electronic structure of the complex and the identity of the three different metal‐to‐ligand charge transfer (1MLCT) electronic transitions remain preserved. On the other hand, the effect of ion pairing manifests itself by a slight change in localization of one of the electronic transitions (with max. at 552 nm) as well as by promotion of the Herzberg–Teller activation of E modes resulting from coupling of E and B2 excited electronic states. Finally, the very low, 1 × 10−11 M SERRS spectral detection limit of [Fe(tpy)2]2+ at 532‐nm excitation is attributed to a concerted action of the electromagnetic and molecular resonance mechanism, in conjunction to the electrostatic bonding of the complex dication to the chloride‐modified Ag NP surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A carbon layer deposited on an optical component is the result of complex interactions between the optical surface, adsorbed hydrocarbons, photons and secondary electrons (photoelectrons generated on the surface of optical elements). In the present study a synchrotron‐induced contamination layer on a 340 mm × 60 mm Au‐coated toroidal mirror has been characterized. The contamination layer showed a strong variation in structural properties from the centre of the mirror to the edge region (along the long dimension of the mirror) due to the Gaussian distribution of the incident photon beam intensity/power on the mirror surface. Raman scattering measurements were carried out at 12 equidistant (25 mm) locations along the length of the mirror. The surface contamination layer that formed on the Au surface was observed to be hydrogenated amorphous carbon film in nature. The effects of the synchrotron beam intensity/power distribution on the structural properties of the contamination layer are discussed. The I(D)/I(G) ratio, cluster size and disordering were found to increase whereas the sp2:sp3 ratio, G peak position and H content decreased with photon dose. The structural parameters of the contamination layer in the central region were estimated (thickness ? 400 Å, roughness ? 60 Å, density ? 72% of bulk graphitic carbon density) by soft X‐ray reflectivity measurements. The amorphous nature of the layer in the central region was observed by grazing‐incidence X‐ray diffraction.  相似文献   

13.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol–gel method was investigated. These BFO samples were implanted by 15.8?MeV ions of Au5+ at various ion fluence ranging from 1?×?1014 to 5?×?1015?ions/cm2. Effect of Au5+ ions’ implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds’ formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8?MeV Au5+ ions at a fluence of 5?×?1015?ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8?MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.  相似文献   

15.
The Raman spectra of 3‐(pent‐1‐enyl) methyl ether (3‐methoxypent‐1‐ene) and four deuterium‐labelled analogues are reported and discussed. Correlations between specific structural features and the associated Raman bands are developed, with a view to enhancing the analytical application of Raman spectroscopy in investigating materials containing an alkenyl group. Particular attention is given to developing means of distinguishing the methyl group attached to the carbon skeleton from that of the methoxy group, to maximize the analytical utility of the signals associated with ν(sp2 CH), ν(sp2 CH2) and ν(CC) stretching vibrations, and to interpreting in more detail certain δ(sp2 CH) and δ(sp2 CH2) vibrations of the atoms of the double bond. These results establish a definitive spectroscopic protocol for differentiating a methoxy group from a methyl substituent attached directly to a carbon atom in unsaturated ethers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
对氧化钇(Y2O3)部分稳定氧化锆(ZrO2)样品在室温下进行了Ni离子注入(140kev,5×1015-2×1017ios/cm2)和热退火处理.应用电学测量,Rutherford背散射技术(RBS),X射线光电子能谱(XPS)和喇曼光谱方法研究了Ni离子注入多晶ZrO2的表面电性能,注入层结构及其热退火的影响。  相似文献   

17.
18.
离子注入ZnO薄膜的拉曼光谱研究   总被引:1,自引:0,他引:1       下载免费PDF全文
室温下,用80 keV N+和400 keV Xe+离子注入ZnO薄膜,注入剂量分别为5.0×1014—1.0×1017/cm2和2.0×1014—5.0×1015/cm2.利用拉曼散射技术对注入前后的ZnO薄膜进行光谱测量和分析,研究了样品的拉曼光谱随离子注入剂量的变化规律.实验结果发现,未进行离子注入的样品在99,435 cm<  相似文献   

19.
高剂量的磷离子注入4H-SiC(0001)晶面,注入速率从1.0×1012到4.0×1012 P+ cm-2s-1变化,而注入剂量固定为2.0×1015 P+ cm-2。室温注入,1500oC的高温下退火。利用光荧光和拉曼谱分析注入产生的晶格损伤以及退火后的残余缺陷。通过霍耳测试来分析注入层的电学性质。基于上述测试结果,发现通过减小磷离子的注入速率,极大地减少了注入层的损伤及缺陷。考虑到室温注入以及相对较低的退火温度(1500 oC),在注入速率为1.0×1012 P+ cm-2s-1及施主浓度下为4.4×1019 cm-3的条件下,获得了非常低的方块电阻106 Ω/sq。  相似文献   

20.
Transition Metal (TM) ions V, Cr, Mn and Co were implanted into GaN/sapphire films at fluences 5×1014, 5×1015 and 5×1016 cm−2. First order Raman Scattering (RS) measurements were carried out to study the effects of ion implantation on the microstructure of the materials, which revealed the appearance of disorder and new phonon modes in the lattice. The variations in characteristic modes 1GaN i.e. E2(high) and A1(LO), observed for different implanted samples is discussed in detail. The intensity of nitrogen vacancy related vibrational modes appearing at 363 and 665 cm−1 was observed for samples having different fluences. A gallium vacancy related mode observed at 277/281 cm−1 for TM ions implanted at 5×1014 cm−2 disappeared for all samples implanted with rest of fluences. The fluence dependent production of implantation induced disorder and substitution of TM ions on cationic sites is discussed, which is expected to provide necessary information for the potential use of these materials as diluted magnetic semiconductors in future spintronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号