首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
唐富顺  赵辉  刘津 《分子催化》2015,(3):256-265
在摸拟轻型柴油车尾气的反应装置上,结合多种物理化学手段研究了富氧条件下Co/ZSM-5催化剂上Co组分分散状态及其C3H8选择性催化还原NOx性能.结果表明,浸渍法制备的Co/ZSM-5催化剂,ZSM-5表面Co的分散容量约为4.5%,当Co担载量高于4.5%时,Co物种开始在分子筛表面聚集形成Co3O4晶体,发生在Co3O4晶体上强的NOx吸附脱附,对富氧条件下C3H8选择性催化还原NOx是不利的.催化剂上孔内的钴物种主要以Co2+离子形式存在,而孔外表面既存在Co3+物种,也存在Co2+物种,Co3+的相对量随Co担载量的增加而增大.在催化剂孔外表面形成的以Co3+和Co2+结合的含有Co-Co键的低聚态Co Ox物种具有较合适的NOx吸附脱附性能和较强的氧化还原性,是富氧条件下C3H8选择性催化还原NOx反应的主要活性中心,反应需要在相邻的两个Co2+和Co3+活性位上完成.  相似文献   

2.
采用流动态原位IR ,TPD及XPS技术研究了NO及SO2 在Co3 O4 /Al2 O3 金属氧化物催化剂表面上的吸附及脱附行为 ,并与该催化剂上模拟烟道气中NO的选择性催化氧化活性相关联 ,考察了SO2 对该反应过程的影响及作用机理 .  相似文献   

3.
SO2对Co3O4/Al2O3选择性催化氧化NO的影响   总被引:5,自引:1,他引:4  
赵秀阁  王辉  肖文德  王军 《催化学报》2000,21(3):239-242
 采用流动态原位IR,TPD及XPS技术研究了NO及SO2在Co3O4/Al2O3金属氧化物催化剂表面上的吸附及脱附行为,并与该催化剂上模拟烟道气中NO的选择性催化氧化活性相关联,考察了SO2对该反应过程的影响及作用机理.  相似文献   

4.
采用吸附和程序升温脱附(TPD)技术研究了介质阻挡放电等离子体对CuZSM-5催化剂上吸附的氮氧化物作用. 实验表明, 介质阻挡放电等离子体使催化剂表面吸附的NO及Cu活性位上吸附的NOx物种脱附, 并引发表面化学反应生成新的氮氧化物. 对于NO/N2体系, 介质阻挡放电等离子体与吸附在CuZSM-5上NO作用, 主要生成N2O和O2. 在富氧体系NO/O2/N2, 则生成较大量的N2O、NO2和NO. 等离子体预处理活性下降的CuZSM-5, 可明显提高其催化分解NO活性. 对比有或无介质阻挡放电等离子体预处理NO或NO/O2饱和吸附的CuZSM-5上的NO-TPD结果表明, 等离子体提高催化剂活性的原因与其使催化剂Cu活性位上吸附的NOx物种脱附有关.  相似文献   

5.
采用吸附和程序升温脱附(TPD)技术研究了介质阻挡放电等离子体对CuZSM-5催化剂上吸附的氮氧化物作用.实验表明,介质阻挡放电等离子体使催化剂表面吸附的NO及Cu活性位上吸附的NOx物种脱附,并引发表面化学反应生成新的氮氧化物.对于NO/N2体系,介质阻挡放电等离子体与吸附在CuZSM-5上NO作用,主要生成N2O和O2.在富氧体系NO/O2/N2,则生成较大量的N2O、NO2和NO.等离子体预处理活性下降的CuZSM-5,可明显提高其催化分解NO活性.对比有或无介质阻挡放电等离子体预处理NO或NO/O2饱和吸附的CuZSM-5上的NO-TPD结果表明,等离子体提高催化剂活性的原因与其使催化剂Cu活性位上吸附的NOx物种脱附有关.  相似文献   

6.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

7.
 采用程序升温脱附、在线质谱和原位漫反射红外光谱等手段, 比较了 NO 和 NO2 在 V2O5 及 V2O5/AC 催化剂表面的选择催化还原 (SCR) 反应行为. 结果表明, 氨以质子态 NH4+和共价态 NH3 分子两种形态吸附于纯 V2O5 表面, V=O 为氨的主要吸附活性位. 无氧状态下, NO 和 NO2 皆可与吸附于 V2O5 表面的 NH3 反应, 并且 NO2 与吸附态 NH3 的反应活性高于 NO. 但在 V2O5/AC 催化剂表面, 同样在无氧条件下, NO 几乎不与吸附态 NH3 反应, 而 NO2 却可以反应并生成 N2. 在 V2O5/AC 表面, NO 很容易被气相 O2 氧化为 NO2, 然后参与 SCR 反应. 可见, NO2 是 NO 在 V2O5/AC 表面发生 SCR 反应的中间体.  相似文献   

8.
Co-M(M=La,Ce, Fe,Mn, Cu,Cr)复合金属氧化物催化分解N2O   总被引:1,自引:0,他引:1  
薛莉  贺泓 《物理化学学报》2007,23(5):664-670
通过共沉淀法制备了一系列Co-M(M= La, Ce, Fe, Mn, Cu, Cr)复合金属氧化物及纯Co3O4催化剂, 考察了其催化分解N2O 的活性. 结果表明在研究的系列催化剂中, Co-Ce 复合氧化物催化剂具有最好的催化分解N2O的活性; 其活性与Ce/Co 摩尔比有直接的关系, 当Ce/Co 摩尔比为0.05 时(CoCe0.05 催化剂)催化活性最佳; 当有NO 和O2共存时, 可能在催化剂活性中心上形成表面硝酸盐或亚硝酸盐吸附物种而使其活性受到较大影响. 通过对Co-M 催化剂的XRD、BET、O2-TPD及H2-TPR 等表征结果的分析, 发现作为主要活性位的Co2+的氧化还原能力是影响催化剂活性的主要原因. 这是因为根据反应机理, N2O 的表面分解步骤与Co2+氧化成Co3+的能力相关, 而吸附氧的脱附与Co3+还原成Co2+的能力相关. 在所研究的催化剂中, 添加除CeO2之外的其它过渡金属氧化物时, 催化剂中Co3+/Co2+的氧化还原能力降低, 因此其催化性能降低. 另外, 添加不同过渡金属氧化物也改变了N2O 催化分解反应的速控步骤.  相似文献   

9.
γ-Mo2N催化剂上H2及NO吸附性质的TPD-MS研究   总被引:2,自引:0,他引:2  
采用TPD-MS方法研究了H2及NO在γ-Mo2N上的吸附状况.单独的H2-TPD结果表明,当H2在673K吸附时,在443K、573K及723K得到了三个H2脱附峰,表明γ-Mo2N上有三种不同能量的H2吸附位.NO-TPD结果表明,NO吸附后亦有三个脱附峰(383K、493K、543K),对应着γ-Mo2N上三种不同能量的NO吸附位:低、中、高能吸附位.NO既可以以解离状态,又可以以一种NO三聚态(dimerordinitrosyl)的形式吸附在γ-Mo2N上,这些吸附物种在脱附过程中产生大量的N2及少量的N2O.对比NO吸附在不同处理条件的γ-Mo2N上的TPD结果可知,NO是吸附在γ-Mo2N上的MO的配位不饱和中心上,这些吸附中心既可通过还原催化剂,又可通过在773K抽空钝化态的γ-Mo2N而产生,H2和NO共吸附的结果表明,预吸附H2再吸附NO后,H2和NO的脱附量均大大减少,且只有两个脱附峰出现.NO只在363K及493K出现两个脱附峰,表明预吸附氢占据了NO的强吸附位,且NO很难取代它,从而使NO只能吸附在能量较低的吸附位上;而H2只在523K及723K出现两个脱附峰,且伴随着H2的脱出有N2和H2O的产生,表明在γ-Mo2N上NO可能与预吸附氢形成了一种复合相MoHx(NO)y,它在脱附时分解为H2、N2及H2O.  相似文献   

10.
KF在CO2和CH3OH直接合成DMC负载型金属催化剂中作用的研究   总被引:4,自引:0,他引:4  
用表面改性和离子交换法制备了MgSiO载体,在其中加入KF助剂制备了MgSiO-KF载体,用等体积浸渍法制备了负载型金属铜催化剂。利用IR、化学分析技术,对载体和负载型金属催化剂进行了表征;采用微反技术,考察了催化剂催化CO2与CH3OH反应的性能,并着重研究了KF助剂对催化性能的影响。结果表明,MgSiO中Mg与Si之间形成双齿型配位结构,KF中的F可以取代Mg-Si-O中的桥O形成-Mg-F和K-O-Si结构。CO2在Cu位上形成线式和剪式吸附态,在金属位与Lewis酸活性位Mg^2 的协同作用下形成卧式吸附态;CH3OH在催化剂上形成分子吸附态和解离吸附态。在催化剂中引入适量助剂KF,可明显提高催化活性。  相似文献   

11.
NO reduction by CO was investigated over CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuOMn2O3/γ-Al2O3 model catalysts before and after CO pretreatment at 300 °C. The CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst exhibited higher catalytic activity than did the other catalysts. Based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis diffuse reflectance spectroscopy (DRS), Raman, and H2-temperature-programmed reduction (TPR) results, as well as our previous studies, the possible interaction model between dispersed copper and manganese oxide species as well as γ-Al2O3 surface has been proposed. In this model, Cu and Mn ions occupied the octahedral vacant sites of γ-Al2O3, with the capping oxygen on top of the metal ions to keep the charge conservation. For the fresh CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, the -Cu-O-Cu- and -Mn-O-Mn- species were formed on the surface of γ-Al2O3, respectively; but for the fresh CuO-Mn2O3/γ-Al2O3 catalyst, -Cu-O-Mn- species existed on the surface of -Al2O3. After CO pretreatment, -Cu-□-Cu- and -Mn-□-Mn- (□ represents surface oxygen vacancy (SOV)) species would be formed in CO-pretreated CuO/γ-Al2O3 and CO-pretreated Mn2O3/γ-Al2O3 catalysts, respectively; whereas -Cu-□-Mn- species existed in CO-pretreated CuO-Mn2O3/γ-Al2O3. Herein, a new concept, surface synergetic oxygen vacancy (SSOV), which describes the oxygen vacancy formed between the individual Mn and Cu ions, is proposed for CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst. In addition, the role of SSOV has also been approached by NO temperature-programmed desorption (TPD) and in situ FTIR experiments. The FTIR results of competitive adsorption between NO and CO on all the CO-pretreated CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuO-Mn2O3/γ-Al2O3 samples demonstrated that NO molecules mainly were adsorbed on Mn2+ and CO mainly on Cu+ sites. The current study suggests that the properties of the SSOVs in CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst were significantly different to SOVs formed in CO-pretreated CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, and the SSOVs played an important role in NO reduction by CO.  相似文献   

12.
本文制备了一系列 Fe-Mn/Al2O3催化剂,并在固定床上考察了其 NH3低温选择性催化还原 NO的性能.首先考察了不同 Fe负载量制备的催化剂的脱硝性能,优选出最佳的 Fe负载量;在此基础上,研究了 Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗 H2O和抗 SO2性能进行了实验研究;同时,对催化剂由于 SO2所造成的失活机制进行了考察.采用 N2吸附-脱附、X射线衍射、透射电镜、能量弥散 X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的 Fe和 Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150°C的脱硝效率可达近99%;同时,在整个低温测试区间(90–210°C)的脱硝效率均超过了92.6%. Fe在催化剂表面主要以 Fe3+形态存在,而 Mn主要包括 Mn4+和 Mn3+; Mn的添加提高了 Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对 NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的 Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受 H2O和 SO2影响较小,抗 H2O和 SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好; SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.  相似文献   

13.
采用TPD技术考察了Cu/MgO催化剂表面NO的脱附和分解。载体MgO表面有两类NO吸附中心,为MgO表面碱中心。负载Cu后,由于Cu覆盖了MgO表面碱中心,使Cu/MgO(>1%)催化剂表面只有吸附在Cu上的NO。热脱附过程伴有明显的分解,产物为N~2,N~2O和O~2。CO-NO反应低温有利于N~2O生成,而高温有利于N~2生成,反应活性与NO-TPD峰温有较好的对应关系。NO在催化剂表面解离(NO~a→N~a+O~a)是CO-NO反应的速控步。  相似文献   

14.
采用共沉淀法制备了系列Ce0.5+xZr0.4-xLa0.1O2-Al2O3催化剂, 其中0≤x≤0.4且Ce0.5+xZr0.4-xLa0.1O2与Al2O3的质量比为1:1. 考察了该系列催化剂对柴油车排放碳烟的催化燃烧性能, 并用低温N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)和氧气程序升温脱附(O2-TPD)等手段对催化剂进行了表征. 研究结果表明该系列催化剂均形成了具有立方萤石结构的固溶体. 当x=0.2时, Ce3+离子在催化剂表面有一定的富集, 此时催化剂具有最大的β氧脱附峰和最好的表面还原性能, 同时具有良好的催化碳烟氧化活性, 碳烟在该催化剂的起燃温度为360 °C, 具有较好的应用前景.  相似文献   

15.
SO2对NO催化氧化过程的影响V.NiO/γ-Al2O3上SO2的作用机理   总被引:7,自引:0,他引:7  
李平  卢冠忠 《化学学报》2003,61(5):660-665
采用程序升温脱附(TPD)及漫反射原位红外光谱(DRIFT)技术分析比较了SO2存 在前后,NO—02反应气体在NiO/γ—Al2O3催化剂上所形成吸附物种的变化情况, 发现SO2能促使硝酸盐物种在低温分解并释放出NO2,而且耐热稳定的硝酸盐物种也 比单纯NO-02吸附时多.室温时催化剂表面上的SO2以弱吸附物种为主,特征红外吸 收峰位于1324cm^-1附近,温度升高后表面硫酸盐物种数量增多.关联SO2气氛中 NO2的生成规律后得出,类似于铅室反应中间体的多分子吸附物种[NO2(SO3)x]是产 生N02的活性物种,由SO2在载体或催化剂表面弱碱位吸附后吸引气相NO所产生,解 离O^-起到稳定活性物种和补充弱碱位的作用.同时该物种也是毒性物质SO4^2-的 前驱体,当KO氧化反应发生后催化剂的失活也开始了.  相似文献   

16.
Pt/HM,Pd/HM催化剂上NO-TPSR和CO-NO反应   总被引:2,自引:0,他引:2  
消除NO对大气的污染,人们进行了广泛的研究,其中选择性催化还原是常用的方法[1].众所周知,分子筛是常用的NO选择性还原催化剂载体,熊金保等[2]考察了Cu-ZSM-5催化剂表面NO的程脱产物,认为NO只吸附在Cu上,载体ZSM-5不吸附NO,Alvarez等[3]认为Na-ZSM-5和NaY表面有少量吸  相似文献   

17.
Interaction of NO2 with an ordered theta-Al2O3/NiAl(100) model catalyst surface was investigated using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The origin of the NO(x) uptake of the catalytic support (i.e., Al2O3) in a NO(x) storage catalyst is identified. Adsorbed NO2 is converted to strongly bound nitrites and nitrates that are stable on the model catalyst surface at temperatures as high as 300 and 650 K, respectively. The results show that alumina is not completely inert and may stabilize some form of NO(x) under certain catalytic conditions. The stability of the NO(x) formed by exposing the theta-Al2O3 model catalyst to NO2 adsorption increases in the order NO2 (physisorbed or N2O4) < NO2 (chemisorbed) < NO2- < NO3-.  相似文献   

18.
制备方法对Co-MOR催化剂CH4选择还原NO性能的影响   总被引:1,自引:0,他引:1  
采用离子交换法、浸渍法制备一系列的Co-MOR 催化剂, 并将其用于CH4选择性催化还原 NOx(CH4-SCR)反应. 运用X 射线衍射(XRD)、X 射线荧光光谱(XRF)、扫描电子显微镜(SEM)、紫外-拉曼(UVRaman)光谱、X射线光电子能谱(XPS)、NO程序升温脱附(NO-TPD)等手段对催化剂进行了表征. 结果表明, 浸渍法制备的催化剂, Co以Co3O4形式存在; 而离子交换法制备的催化剂, Co以离子形式进入丝光沸石(MOR)骨架之中, 在催化剂上形成更多的Co2+和[Co-O-Co]2+, 形成更均匀NO吸附中心和CH4-SCR反应活性中心. 催化剂活性评价表明离子交换法制备的催化剂具有更宽的活性温度区间, Co(0.30)-MOR 催化剂在327-450℃温度范围内NO转化率大于50%.  相似文献   

19.
Ce-Al2O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by O2 and in selective catalytic reduction of NO by C2H2(C 2 H 2-SCR).It is found that C2H2-SCR is initiated and controlled by NO oxidation to NO 2 over Al2O3.Ce loading on Al2O3 is almost inactive for NO oxidation below 350 C,since NO2 strongly adsorbs on cerium oxide,leading to the active sites being blocked,which was characterized by temperature-programmed desorption of NO and NO 2 and Fourier transform infrared spectroscopy after NO+O 2 coadsorption over the samples.However,in the case of C2H2-SCR,Ce loading on Al 2 O 3 significantly improves the reaction by accelerating the NO oxidation step in the temperature range of 250-450 C,since the nitrate species produced by NO 2 adsorption is an active intermediate required by C2H 2-SCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号