首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   7篇
  国内免费   10篇
化学   20篇
综合类   1篇
数学   3篇
物理学   6篇
  2023年   1篇
  2022年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2006年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
主要基于紫外可见(UV-Vis)漫反射光谱首次对比研究了经过热处理、有机或无机染料改色或钴-60产生的γ射线辐照三种不同处理工艺对同为珍珠质的淡水与海水珍珠及贝壳珍珠层的漫反射光谱的影响机制。结果表明:(1)在不同颜色、淡海水属性的珍珠与贝壳珍珠层的UV-Vis反射光谱的紫外区皆存在约280 nm 处的吸收峰,上述吸收峰位归属于珍珠层中自身存在的有机质所致,而非珍珠的致色色素。(2)以上三种不同的处理工艺对上述280 nm处的吸收峰位存在一致的影响行为,即随着不同的处理工艺强度的增大,处理样品对应的反射谱图中约280 nm处吸收峰的强度逐渐降低直至消失。与此同时,珍珠的反射谱图中紫外区的反射主波长的反射强度也随之减弱,且反射主波长的峰位向可见光区发生显著红移。研究工作可为珍珠及珍珠的优化处理的鉴定筛选及其珍珠颜色的形成属性判定提供检测依据与理论支撑。  相似文献   
2.
激光共振电离光谱技术是一种利用一路或多路激光将待测原子选择性共振激发与电离,通过测量离子信号来研究原子能级结构的光谱技术。研建了一套激光共振电离光谱装置,用于原子高激发态能级结构参数的测量。分别从该装置的总体结构、关键技术和应用实例等方面进行了详细介绍。该套装置主要包括高调谐精度的染料激光器系统、高效的激光离子源系统和高分辨率的飞行时间质量分析器。染料激光器系统包括3台多纵模可调谐染料激光器和1台单纵模可调谐染料激光器,均为脉冲工作方式,重复频率为10kHz,泵浦源均为532nm的Nd∶YAG固体激光器。激光离子源系统包括原子化源、激光与原子相互作用区和离子光学透镜组三部分组成,样品在原子化源中被电加热实现原子化,喷射出的原子被激光选择性激发、电离,产生的离子被离子传输透镜整形成能量分散小、束窄的离子束。飞行时间质量分析器采用了反射式结构设计、脉冲垂直推斥技术和偏转板调节技术。利用此装置,实验测定了U原子的自电离态光谱,获得了U原子一条较佳的三色三光子共振电离路径,对应激光的波长分别为591.7,565.0和632.4nm。此系统还可用于测量同位素位移和原子超精细结构等参数。另外,由于此系统中联用了质量分析器,因此可用于样品多元素分析、痕量元素分析、同位素丰度分析。  相似文献   
3.
建立了铀颗粒物中铀全同位素比值的分析方法,采用双面胶带装载铀颗粒物样品,优化激光烧蚀-多接收电感耦合等离子体质谱的运行参数,用标准样品交叉法校正质量分馏和探测器检测效率,测定了粒径几十微米的铀标准物质CRM124-1、GBW04234和GBW04238中铀全同位素比值.本方法对铀颗粒物中235U/238U、234 U/235U和236 U/235U测量的相对实验标准不确定度分别小于0.050%,1.7%和1.8%,测量结果与参考值在不确定度范围内符合.研究表明,本方法可快速、准确、高精度地测定铀颗粒物中铀全同位素比值.  相似文献   
4.
一类强阻尼波方程解的存在性和爆破性   总被引:3,自引:0,他引:3  
讨论一类强阻尼波方程解的局部存在性,并利用势井理论研究解的整体存在性和爆破性.  相似文献   
5.
γ—Mo2N合成过程中的热变化及中间产物的研究   总被引:2,自引:0,他引:2  
采用DTA技术,通过改变升温速率研究了γ-Mo2N合成过程中的热变化,并经XRD,BET及IR测试,对DTA曲线中的谱峰进行归属,考察了中间产物,DTA结果表明,在MoO3和NH3程序升温反应过程中有放热峰及吸热峰出现,且随升温速率的长高,放热峰面积与吸热峰面积之比逐渐减小,结合XRD及IR结果可知,DTA曲线听放热峰可归属为由MoO3变化为MoO2的还原峰,吸热峰则归属为由MoO2变化为Mo2N  相似文献   
6.
光电三极管具有伏安,光照,温度,功率等多种特性,正确选择使用某种型号的光电三极管之前需要熟悉其特性,因此需要一种便携、廉价、易操作的测试仪对光电三极管的特性进行测试,本文设计出基于LabWindows/CVI设计了一种光电三极管虚拟测试仪,用高速采集卡和LabWindows/CVI取代传统的模拟电子电路测试仪器完成光电三极管特性的测量。在构建虚拟仪器测试方案的基础上,首先设计了一种信号放大电路用于光电三极管输出信号的放大处理,然后提出了光电三极管特性测量方法,最后阐述了labWindows/CVI环境下的光电三极管测试数据处理过程;实验测试表明:所设计的虚拟测试仪能够准确地对光电三极管的伏安特性和光照特性进行测量,测试结果形象化地显示在仪器面板上,有效地避免因工作时参数过高对光电三极管造成的影响。  相似文献   
7.
为有效获取铀颗粒物中具有取证价值的铅杂质同位素信息,建立了激光烧蚀-多接收电感耦合等离子体质谱(LA-MC-ICP-MS)测定铀颗粒物中铅杂质同位素比值的方法.探究了诸多同位素分馏效应校正方法下铅本底对同位素测量的影响,选用的LA-MC-ICP-MS系统的本底对比值测量结果的影响小于0.001(208Pb的信号强度大于2.2× 103 cps),确定采用NIST SRM612为外标校正质量分馏,固定激光束斑直径30μm、脉冲重复率20 Hz、调节能量密度使LA-MC-ICP-MS分析NIST SRM612和铀颗粒物样品所得208Pb分别小于1.5×105 cps和3×104 cps,标准物质CRM124-4样品中206Pb/208Pb、206Pb/207Pb和207Pb/208Pb比值测量结果的相对实验标准不确定度小于0.48%、0.68%和0.40%.实际样品分析结果表明,本方法可有效区分铀颗粒物中的铅同位素比值差异,有助于鉴别其来源.  相似文献   
8.
采用本实验室建立的气溶胶直接进样ICP-MS在线定量分析技术,对取样钢瓶取得的某环境气溶胶样品进行直接进样快速分析.结果表明: 对239Pu的检出限为1.4×10-3 Bq/m3;所测样品浓度在3.1×10-3~1.2×10-2 Bq/m3之间,比法规限值低一个量级以上.  相似文献   
9.
为准确地获取单个铀颗粒物中具有核保障监督和核取证意义的铀同位素组成信息和~(230)Th/~(234)U比值,本研究基于多接收电感耦合等离子体质谱(MC-ICP-MS),建立了不同粒径铀颗粒物中铀同位素比值的测量方法和不经化学分离纯化流程的~(230)Th/~(234)U分析技术。在评估铀钍本底的基础上,采用外标法校正同位素的质量分馏效应,进样0.40 ng/g的天然铀工作溶液跳峰测量离子计数器检测效率,使用已知铀钍比例的标样校正铀钍响应差异,完成分析方法的不确定度评估。结果表明,化学处理过程引入的~(238)U和~(232)Th分别小于8×10~(-5)ng和1.5×10~(-3)ng,MC-ICP-MS对粒径0.5~5.0μm铀颗粒物中~(235)U/~(238)U测量的相对扩展不确定度3.6%(k=2),主要来自本底扣除引入的不确定度和B类不确定度;对粒径5μm铀颗粒物中~(235)U/~(238)U测量的相对扩展不确定度0.2%(k=2),主要来自法拉第杯检测器对弱信号测量的不确定度;对更大粒径铀颗粒物中~(234)U/~(235)U和~(236)U/~(235)U测量的相对扩展不确定度分别小于3.5%和3.8%(k=2),主要来自B类不确定度。不经铀钍分离纯化流程,MC-ICP-MS可测得粒径几十微米铀颗粒物中~(230)Th/~(234)U比值信息,并诊断浓缩铀颗粒物生产年龄。  相似文献   
10.
采用基于密度泛函理论(DFT)的第一性原理赝势平面波方法,计算了不同数量的Al原子代位六方D88结构的Ti5Si3晶体中的Si原子后的形成能(ΔHf)、结合能(ΔEcoh)、体模量(B)、剪切模量(G)、泊松比(ν)、Cauchy压力参数(C12―C66,C13―C44)、金属性(fm)和派-纳力(τP-N)等参数,表征了Al合金化对D88-Ti5Si3的结构稳定性和力学性质的影响.结合态密度、差分电荷密度图和Mulliken布居等电子结构分析,揭示了Al原子的添加量对D88-Ti5Si3的韧/脆性变化的影响机制.研究表明,D88-Ti5Si3晶体中强的Ti6g―Si6g方向共价键是导致其室温脆性的主要原因.当1个和2个Al原子占据D88-Ti5Si3晶体中Si6g位置时,形成了键强较弱的Al6g―Si6g键、Ti6g―Al6g键和Ti4d―Al6g键,同时降低了D88-Ti5Si3中Ti6g―Si6g键的强度和数量,从而提高了D88-Ti5Si3的韧性.当D88-Ti5Si3晶体中Si6g位置被3个Al原子所占时,Al6g―Si6g键消失,而Ti6g―Si6g键的强度增加,导致Ti5(Si1-xAlx)3的脆性增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号