首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We develop two theoretical approaches for dealing with the low-energy effects of the repulsive interaction in one-dimensional electron systems. Renormalization Group methods allow us to study the low-energy behavior of the unscreened interaction between currents of well-defined chirality in a strictly one-dimensional electron system. A dimensional regularization approach is useful, when dealing with the low-energy effects of the long-range Coulomb interaction. This method allows us to avoid the infrared singularities arising from the long-range Coulomb interaction at D = 1. We can also compare these approaches with the Luttinger model, to analyze the effects of the short-range term in the interaction. Thanks to these methods, we are able to discuss the effects of a strong magnetic field B in quasi one-dimensional electron systems, by focusing our attention on Carbon Nanotubes. Our results imply a variation with B in the value of the critical exponent α for the tunneling density of states, which is in fair agreement with that observed in a recent transport experiment involving carbon nanotubes. The dimensional regularization allows us to predict the disappearance of the Luttinger liquid, when the magnetic field increases, with the formation of a chiral liquid with α = 0.  相似文献   

2.
The Pt-Pd and Pd-Ag nanostructured bimetallic films on porous α-Al2O3 substrates are successfully synthesized by chemical deposition using lyotropic liquid crystalline templating strategy. The co-reduction of two metallic species in the presence of liquid crystalline phase by hydrazine hydrate produces hexagonal nanostructured Pt-Pd and lamellar nanostructured Pd-Ag films. Low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies show the ordered nanostructure of both Pt-Pd and Pd-Ag films. The energy dispersive X-ray (EDX) and wide-angle XRD analyses of the bimetallic films have verified the coexistence and uniform distribution of constituent metallic species. By taking into account of catalytic activities, well-defined nanochannels and higher surface areas, the nanostructured bimetallic films might have application potential in microreactors.  相似文献   

3.
NMR measurements have revealed that methane can exist in coal samples in the state of solid solution rather than only adsorbed gas, opening new ways to prevention of gas dynamic accidents in underground coal mines and true estimation of coalbed methane resources.Understanding molecular structure of coal constituents and forms of methane occurrence in coal is the only way of extracting safely either coal or methane. We had studied nuclear magnetic resonance lines in various coals at room or low temperatures and have found that there exist three species of methane molecules differing in molecular mobility. Based on estimated diffusion parameters, these species were attributed to free methane, adsorbed methane, and solid solution of methane in crystalline coal substance. While first two phases are well known and can be analyzed by many different techniques, the last one hardly can be studied by methods other than NMR, resulting in inadequate estimations of methane resources.  相似文献   

4.
Amorphous Fe-Mo-Cu-B ribbons with varying Fe/B ratio were prepared by planar flow casting. Characteristic transformation temperatures as well as the transformation kinetics were determined by DTA and DSC analyses. The presence of magnetic phases was identified by VSM-magnetometry; the information about their local ordering was obtained using Mössbauer spectrometry. Structure analysis was performed by X-ray diffraction analysis and by transmission electron microscopy. In all cases, higher bcc-Fe crystallization temperatures and lower magnetization of crystalline samples are observed with increasing content of boron.  相似文献   

5.
We report on structural characterization of void-structures created by a micro-explosion at the locus of a tightly focused femtosecond laser pulse inside the crystalline phase of Al2O3 (R3c space group). The transmission electron microscopy (TEM), micro-X-ray diffraction (XRD) analysis, and Raman scattering revealed a presence of strongly structurally modified amorphous regions around the void-structures. We discuss issues of achieving the required resolution for structural characterization and assignment of newly formed phases of nano-crystallites by TEM, XRD, and Raman scattering from micro-volumes of modified materials enclosed inside the bulk of the host phase.  相似文献   

6.
Titanium and aluminum nitride synthesis via layer by layer LA-CVD   总被引:1,自引:0,他引:1  
The possibility of the layer-by-layer synthesis of 3D parts from nitrides of titanium or aluminum by selective laser sintering/melting is discussed. The relationship between laser processing parameters and structure and phase content of sintered/melted samples are studied by means of optical metallography, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Optimal parameters of SLM process for AlN and TiN synthesis are determined. Solid 3D parts containing a TiN phase are produced from Ti powder. Distortion of the crystalline lattice of AlN and TiN phases is observed with the laser energy input.  相似文献   

7.
Two alloys of the Co-Ge system were produced by mechanical alloying starting from the elemental powders in the compositions Co20Ge80 and Co40Ge60. The crystalline structures of the CoxGe100−x (x=20, 40) alloys obtained were investigated using the X-ray diffraction (XRD) technique. The measured XRD patterns showed the presence of the peaks corresponding to the crystalline m-CoGe phase and also to the high pressure and temperature phase c-CoGe in the as-milled sample for Co20Ge80, although it was milled at room temperature and pressure. For Co40Ge60, the crystalline Co3Ge2 phase was obtained, and structural data for all phases were determined by means of a Rietveld refinement procedure. The thermal stability of the phases was investigated performing a heat treatment of the alloys at 450 °C for 6 h and, after that, new XRD measurements were collected and were also studied using a Rietveld refinement procedure. The m-CoGe and Co3Ge2 phases seem to be very stable, but the relative amount of c-CoGe decreases a little, indicating a less stable phase, which can be explained by the fact that it is produced usually under extreme conditions.  相似文献   

8.
The electron transport properties of hybrid ferromagnetic||normal metal structures such as multilayers and spin valves depend on the relative orientation of the magnetization direction of the ferromagnetic elements. Whereas the contrast in the resistance for parallel and antiparallel magnetizations, the so-called giant magnetoresistance, is relatively well understood for quite some time, a coherent picture for non-collinear magnetoelectronic circuits and devices has evolved only recently. We review here such a theory for electron charge and spin transport with general magnetization directions that is based on the semiclassical concept of a vector spin accumulation. In conjunction with first-principles calculations of scattering matrices many phenomena, e.g. the current-induced spin-transfer torque, can be understood and predicted quantitatively for different material combinations.  相似文献   

9.
We present a theoretical study on the spin-dependent transport of electrons in hybrid ferromagnetic/semiconductor nanosystem under an applied bias voltage. Experimentally, this kind of nanosystem can be realized by depositing a magnetized ferromagnetic stripe with arbitrary magnetization direction on the surface of a semiconductor heterostructure. It is shown that large spin-polarized current can be achieved in such a nanosystem. It is also shown that the spin polarity of the electron transport can be switched by adjusting the applied bias voltage. These interesting properties may provide an alternative scheme to realize spin injection into semiconductors, and such a nanosystem may be used as a tunable spin-filter by bias voltage.  相似文献   

10.
TiN/SiC nanomultilayers with various constituent layer thicknesses were prepared by magnetron sputtering using TiN and SiC ceramic targets. X-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, high-resolution transmission electron microscope, atomic force microscope and nanoindenter were employed to study the growth, microstructure and mechanical properties of these films. Experimental results revealed that amorphous SiC, which is more favorable under normal sputtering conditions, was forced to crystallize and grew epitaxially with TiN layers at thicknesses of less than 0.8 nm. The resultant films were found to form strong columnar structures, accompanied with a remarkable hardness increment. Maximal nanoindentation hardness as high as 60.6 GPa was achieved when SiC thickness was ∼0.6 nm. A further increase of SiC thickness caused the formation of amorphous SiC, which blocked the epitaxial growth of the multilayers, resulting in the decline of film's hardness. Additionally, investigations on multilayers different in TiN layer thicknesses showed that they are insensitive in both microstructure and hardness to the fluctuation of TiN layer thickness. The formation of epitaxially grown structure between crystalline SiC and TiN layers was found to be responsible for the obtained superhardness in multilayers.  相似文献   

11.
The structural and mechanical properties of 2D crystalline surface phases that form at the surface of liquid eutectic Au82Si18 are studied using synchrotron x-ray scattering over a large temperature range. In the vicinity of the eutectic temperature the surface consists of a 2D atomic bilayer crystalline phase that transforms into a 2D monolayer crystalline phase during heating. The latter phase eventually melts into a liquidlike surface on further heating. We demonstrate that the short wavelength capillary wave fluctuations are suppressed due to the bending rigidity of 2D crystalline phases. The corresponding reduction in the Debye-Waller factor allows for measured reflectivity to be explained in terms of an electron density profile that is consistent with the 2D surface crystals.  相似文献   

12.
Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.  相似文献   

13.
Discotic liquid crystals (LCs) are promising materials in the field of electronic components and, in particular, to make efficient photovoltaic cells due to their good charge transport properties. These materials generally exhibit a mesophase in which the disk-shaped molecules can self-assemble into columns, which favorize charge displacement, and may align themselves uniformly on surfaces to form well-oriented thin films. In order to orientate such a columnar thin film on an indium tin oxide (ITO) substrate, the film is heated up to the temperature range of the isotropic liquid phase and subsequently cooled down again. This treatment may lead not only to the desired alignment, but also to dewetting, which leads to an appreciable inhomogeneity in film thickness and to short circuits during the realization of photovoltaic cells. In this article, we describe how this dewetting and the film morphology can be influenced by ITO surface treatments. The chemical modifications of the surface by these treatments were studied by X-ray photoelectron spectroscopy (XPS). Such ITO treatments are shown to be efficient to prevent thin film dewetting when combined with rapid cooling through the isotropic-to-LC phase transition.  相似文献   

14.
SiC films doped with aluminum (Al) were prepared by the rf-magnetron sputtering technique on p-Si substrates with a composite target of a single crystalline SiC containing several Al pieces on the surface. The as-deposited films were annealed in the temperature range of 400-800 °C under nitrogen ambient. The thin films have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results show that the introduction of Al into films hinders crystalline formation process. And with the increase of annealing temperature, more Si particles are formed in the films, which strongly affect the optical absorption properties. The photoluminescence (PL) spectra of the samples show two peaks at 370 nm and 412 nm. The intensities of the PL peaks are evidently improved after Al doped. We attribute the origin of the two PL peaks to a kind of Si-related defect centres. The obtained results are expected to have important applications in modern optoelectronic devices.  相似文献   

15.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

16.
We present a study of the nanoindentation behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy; the surface roughness, microstructure, and crystallinity were analyzed using atomic force microscopy, cross-sectional transmission electron microscopy, and X-ray diffraction; the hardness H and elastic modulus E were studied using nanoindentation techniques. We found that these highly crystalline materials possessed no stacking faults or twins in their microstructures. We observed a very marked increase in the value of H and a significant decrease in the value of E upon increasing the concentration of Cd, presumably because of an increase in the stiffness of the CdSe bond relative to that of the ZnSe bond. We observed a corresponding shrinkage of the contact-induced damage area for those films having a small grain size and a higher value of H. It appears that resistance against contact-induced damage requires a higher Cd concentration.  相似文献   

17.
A semiclassical theory based on the Boltzmann transport equation for a two-dimensional electron gas modulated along one direction with weak electrostatic or magnetic modulations is proposed. It is shown that oscillations of the magnetoresistivity ρ corresponding to the current driven along the modulation lines observed at moderately low magnetic fields, can be explained as classical geometric resonances reflecting the commensurability of the period of spatial modulations and the cyclotron radius of electrons.  相似文献   

18.
J. Jun 《Applied Surface Science》2009,255(20):8544-8550
We have fabricated CuO-core/TiO2-shell one-dimensional nanostructures by coating the CuO nanowires with MOCVD-TiO2. The structure of the core/shell nanowires has been investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis techniques. The CuO-cores and the TiO2-shells of the as-synthesized nanowires have been found to have crystalline monoclinic CuO and crystalline tetragonal anatase TiO2 structures, respectively. The CuO-core/TiO2-shell nanowires are winding and has rougher surface, whereas the CuO nanowires are straight and have smoother surface.Influence of the substrate temperature and the growth time on the structure such as the morphology, size, and crystallographic orientation of CuO nanowires synthesized by thermal oxidation of Cu foils have also been investigated. All the nanowires have only the CuO phase synthesized at 600 °C, whereas those synthesized at 400 °C have both CuO and Cu2O phases. The highest density of CuO nanowires with long thin straight morphologies can be obtained at 600 °C. In addition, the growth mechanism of the CuO nanowires has been discussed.  相似文献   

19.
We observe several non-Fermi liquid behaviors in the normal-state transport properties of CeMIn5 (M: Rh and Co) under pressure at low temperatures: (1) The dc-resistivity shows T-linear dependence, ρxxT. (2) The magnitude of Hall coefficient |RH| increases rapidly with decreasing temperature, and reaches a value much larger than |1/ne| at low temperatures. (3) The magnetoresistance displays T- and H-dependence that strongly violate Kohler's rule, and is well scaled by the tangent of the Hall angle, . These non-Fermi liquid properties in the electron transport are remarkably pronounced when the AF fluctuations are enhanced in the vicinity of the quantum critical point. Since all of these salient features have been also reported for high-Tc cuprates, we infer that the non-Fermi liquid transport properties capture universal features of strongly correlated electron systems in the presence of strong antiferromagnetic fluctuations.  相似文献   

20.
We report on a theoretical study of spin-dependent electron transport in a two-dimensional electron gas (2DEG) modulated by a stripe of ferromagnetic metal under an applied voltage. A general formula of transmission probability for electronic tunneling through this system is obtained. Based on this formula, it is shown that large spin-polarized current can be achieved in such a device. It is also shown that the degree of electron-spin polarization is strongly dependent upon the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to spin-polarize electrons into semiconductors, and this device may be used as a voltage-tunable spin-filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号