首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stabilization of discotic liquid organic thin films by ITO surface treatment
Authors:S Archambeau  P Jolinat  P Destruel  TP Nguyen  E Grelet
Institution:a Laboratoire de Génie Electrique de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
b Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, 44322 Nantes, France
c Centre de Recherche Paul Pascal, CNRS, Université Bordeaux 1, 33600 Pessac, France
Abstract:Discotic liquid crystals (LCs) are promising materials in the field of electronic components and, in particular, to make efficient photovoltaic cells due to their good charge transport properties. These materials generally exhibit a mesophase in which the disk-shaped molecules can self-assemble into columns, which favorize charge displacement, and may align themselves uniformly on surfaces to form well-oriented thin films. In order to orientate such a columnar thin film on an indium tin oxide (ITO) substrate, the film is heated up to the temperature range of the isotropic liquid phase and subsequently cooled down again. This treatment may lead not only to the desired alignment, but also to dewetting, which leads to an appreciable inhomogeneity in film thickness and to short circuits during the realization of photovoltaic cells. In this article, we describe how this dewetting and the film morphology can be influenced by ITO surface treatments. The chemical modifications of the surface by these treatments were studied by X-ray photoelectron spectroscopy (XPS). Such ITO treatments are shown to be efficient to prevent thin film dewetting when combined with rapid cooling through the isotropic-to-LC phase transition.
Keywords:61  30 Hn  68  35 Fx  61  30 &minus  v  68  55  &minus  a  79  60 Fr  81  15  &minus  z
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号