首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
《Current Applied Physics》2018,18(7):829-833
We examine the temperature-dependent excitonic transition energy shift of strain-free GaAs droplet epitaxy (DE) quantum dots (QDs). Interestingly the statistical investigation of QD optical properties enables us to observe three distinct temperature dispersions for four series of DE QDs. We present comparative analyses of the exciton-phonon coupling mechanisms employing various empirical to multi-oscillator models associated with each QD-specific phonon dispersion spectrum. The systematic investigation of such QD exciton-phonon coupling is crucial for fine control of local defects in engineered quantum dot single-photon sources.  相似文献   

2.
Efficient generation of polarized single photons or entangled photon pairs is crucial for the implementation of quantum key distribution (QKD) systems. Self organized semiconductor quantum dots (QDs) are capable of emitting on demand one polarized photon or an entangled photon pair upon current injection. Highly efficient single‐photon sources consist of a pin structure inserted into a microcavity where single electrons and holes are funneled into an InAs QD via a submicron AlOx aperture, leading to emission of single polarized photons with record purity of the spectrum and non‐classicality of the photons. A new QD site‐control technique is based on using the surface strain field of an AlOx current aperture below the QD. GaN/AlN QD based devices are promising to operate at room temperature and reveal a fine‐structure splitting (FSS) depending inversely on the QD size. Large GaN/AlN QDs show disappearance of the FSS. Theory also suggests QDs grown on (111)‐oriented GaAs substrates as source of entangled photon pairs.  相似文献   

3.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

4.
Quantum transducers can transfer quantum information between different systems. Microwave–optical photon conversion is important for future quantum networks to interconnect remote superconducting quantum computers with optical fibers. Here, a high-speed quantum transducer based on a single-photon emitter in an atomically thin membrane resonator, that can couple single microwave photons to single optical photons, is proposed. The 2D resonator is a freestanding van der Waals heterostructure (which may consist of hexagonal boron nitride, graphene, or other 2D materials) that hosts a quantum emitter. The mechanical vibration (phonon) of the 2D resonator interacts with optical photons by shifting the optical transition frequency of the single-photon emitter with strain or the Stark effect. The mechanical vibration couples to microwave photons by shifting the resonant frequency of an LC circuit that includes the membrane. Thanks to the small mass of the 2D resonator, both the single-photon optomechanical coupling strength and the electromechanical coupling strength can reach the strong coupling regime. This provides a way for high-speed quantum state transfer between a microwave photon, a phonon, and an optical photon.  相似文献   

5.
Very recently, a multiexcitonic quantum dot in an optical microcavity have been theoretically studied [Herbert Vincka, Boris A. Rodriguez, and Augusto Gonzalez, Physica E, 2006, 35: 99–102]. However, due to the inevitable damping losses through the microcavity, in this work, we will present a more precise and sound model in the Lindblad form master equation to investigate the photonic properties of a single quantum dot (QD) in an optical microcavity system, in which the QD may confine the multiexcitons and be in resonant interaction with a single photonic mode of an optical microcavity. The excitation energies, and the properties of the emission photon from the QD microcavity are computed as functions of the exciton-photon coupling strength, detuning, and pump rate. We further compare our results with their results, and find that the calculated intensity of the emitted photon and the spectra crucially depend on the exciton-photon coupling strength g, the photon detuning, and the number of excitons in the QD. Finally, we will give a physical mechanism of the dressed-state picture for the strong coupling between the single mode of an optical microcavity and the QD emitters to explain the details of the emission photon spectra. Our study establishes useful guidelines for the experimental study of such multiexcitonic quantum dot in an optical microcavity system.   相似文献   

6.
李天信  翁钱春  鹿建  夏辉  安正华  陈张海  陈平平  陆卫 《物理学报》2018,67(22):227301-227301
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.  相似文献   

7.
张志伟  赵翠兰  孙宝权 《物理学报》2018,67(23):237802-237802
采用双层耦合量子点的分子束外延生长技术生长了InAs/GaAs量子点样品,把量子点的发光波长成功地拓展到1.3 μm.采用光刻的工艺制备了直径为3 μm的柱状微腔,提高了量子点荧光的提取效率.在低温5 K下,测量得到量子点激子的荧光寿命约为1 ns;单量子点荧光二阶关联函数为0.015,显示单量子点荧光具有非常好的单光子特性;利用迈克耳孙干涉装置测量得到单光子的相干时间为22 ps,对应的谱线半高全宽度为30 μeV,且荧光谱线的线型为非均匀展宽的高斯线型.  相似文献   

8.
A theory of single-photon interband transitions involving optical phonons in semiconductor quantum dots (QDs) has been developed. This theory assumes that the electron subsystem of QDs with infinite potential walls is in strong confinement, and its energy spectrum can be described according to the two-band semiconductor model. Longitudinal optical phonons are considered to be related to the QD electron subsystem via polar (Fröhlich) electronphonon interaction. It is shown that, in these approximations, only the off-diagonal part of electron-phonon interaction leads to the generation of electron-hole pairs with the participation of phonons; the selection rules for these transitions differ from those for zero-phonon transitions. Analytical expressions for the light-absorption coefficients of ensembles of identical and size-distributed QDs have been obtained.  相似文献   

9.
Single colloidal quantum dots (QDs) are increasingly exploited as triggered sources of single photons. This review reports on recent results on single photon sources (SPS) based on colloidal quantum dots, whose size, shape and optical properties can be finely tuned by wet chemistry approach. First, we address the optical properties of different colloidal nanocrystals, such as dots, rods and dot in rods and their use as single photon sources will be discussed. Then, we describe different techniques for isolation and positioning single QDs, a major issue for fabrication of single photon sources, and various approaches for the embedding single nanocrystals inside microcavities. The insertion of single colloidal QDs in quantum confined optical systems allows one to improve their overall optical properties and performances in terms of efficiency, directionality, life time, and polarization control. Finally, electrical pumping of colloidal nanocrystals light emitting devices and of NC-based single photon sources is reviewed.  相似文献   

10.
苏丹  窦秀明  丁琨  王海艳  倪海桥  牛智川  孙宝权 《物理学报》2015,64(23):235201-235201
采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.  相似文献   

11.
Polarization properties of single photons emitted by optical pumping from a single quantum dot ( QD) are studied by using a four-level system model. The model is capable of explaining the polarization uncertainty observed in single photon emission experiments. It is found that the dependence of photon emission efficiency and polarization visibility on pump power are opposite in general cases. By employing QDs with small size and strong carrier confinement, the photon polarization visibility under high pump power can be improved. In addition, embedding a QD into a well designed microcavity is also found to be favourable, whereas the trade-off between high polarization visibility and multi-photon emission is noted.  相似文献   

12.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

13.
半导体量子点激光器研究进展   总被引:11,自引:0,他引:11  
王占国 《物理》2000,29(11):643-648
首先简要地回顾了半导体激光器发展的历史和量子点激光器所特有的优异性能,进而介绍半导体量子点及其三维量子点阵列的制备技术,然后分别讨论了量子点激光器(能带)结构设计思想,实现基态激射时所必须具备的条件和近年来国内外半导体量子点器的研究进展。最后分析讨论了量子点激光器研制中存在的问题和发展趋势。  相似文献   

14.
Solid-state sources of single-photon emitters are highly desired for scalable quantum photonic applications, such as quantum communication, optical quantum information processing, and metrology. In the past year, great strides have been made in the characterization of single defects in wide-bandgap materials, such as silicon carbide and diamond, as well as single molecules, quantum dots, and carbon nanotubes. More recently, single-photon emitters in layered van der Waals materials attracted tremendous attention, because the two-dimensional(2 D)lattice allows for high photon extraction efficiency and easy integration into photonic circuits. In this review, we discuss recent advances in mastering single-photon emitters in 2 D materials, electrical generation pathways,detuning, and resonator coupling towards use as quantum light sources. Finally, we discuss the remaining challenges and the outlooks for layered material-based quantum photonic sources.  相似文献   

15.
Photoluminescent semiconductor nanocrystals, quantum dots (QDs), are nowadays one of the most promising materials for developing a new generation of fluorescent labels, new types of light-emitting devices and displays, flexible electronic components, and solar panels. In many areas the use of QDs is associated with an intense optical excitation, which, in the case of a prolonged exposure, often leads to changes in their optical characteristics. In the present work we examined how the method of preparation of quantum dot/polymethylmethacrylate (QD/PMMA) composite influenced the stability of the optical properties of QD inside the polymer matrix under irradiation by different laser harmonics in the UV (355 nm) and visible (532 nm) spectral regions. The composites were synthesized by spin-coating and radical polymerization methods. Experiments with the samples obtained by spin-coating showed that the properties of the QD/PMMA films remain almost constant at values of the radiation dose below ~10 fJ per particle. Irradiating the composites prepared by the radical polymerization method, we observed a monotonic increase in the luminescence quantum yield (QY) accompanied by an increase in the luminescence decay time regardless of the wavelength of the incident radiation. We assume that the observed difference in the optical properties of the samples under exposure to laser radiation is associated with the processes occurring during radical polymerization, in particular, with charge transfer from the radical particles inside QDs. The results of this study are important for understanding photophysical properties of composites on the basis of QDs, as well as for selection of the type of polymer and the composite synthesis method with quantum dots that would allow one to avoid the degradation of their luminescence.  相似文献   

16.
李园  窦秀明  常秀英  倪海桥  牛智川  孙宝权 《物理学报》2011,60(3):37809-037809
利用分子束外延生长 InAs 单量子点样品,测量了温度为 5 K 时单量子点的荧光(PL)光谱.采用时间关联光子强度测量(HBT)验证了 PL 光谱具有单光子发射特性.单光子通过马赫曾德尔 (MZ) 干涉仪,验证了单光子自身具有干涉特性.测量了当 MZ 干涉仪两臂偏振方向的夹角改变时对应的单光子干涉及条纹可见度的变化. 关键词: 量子点单光子源 反群聚效应 马赫曾德尔干涉  相似文献   

17.
Controlling spontaneous emission (SE) is of fundamental importance to a diverse range of photonic applications including but not limited to quantum optics, low power displays, solar energy harvesting and optical communications. Characterized by photonic bandgap (PBG) property, three‐dimensional (3D) photonic crystals (PCs) have emerged as a promising synthetic material, which can manipulate photons in much the same way as a semiconductor does to electrons. Emission tunable nanocrystal quantum dots (QDs) are ideal point sources to be embedded into 3D PCs towards active devices. The challenge however lies in the combination of QDs with 3D PCs without degradation of their emission properties. Polymer materials stand out for this purpose due to their flexibility of incorporating active materials. Combining the versatile multi‐photon 3D micro‐fabrication techniques, active 3D PCs have been fabricated in polymer‐QD composites with demonstrated control of SE from QDs. With this milestone novel miniaturized photonic devices can thus be envisaged.  相似文献   

18.
The article discusses some of the recent results on semiconductor quantum dots with magnetic impurities. A single Mn impurity incorporated in a quantum dot strongly changes the optical response of a quantum-dot system. A character of Mn-carrier interaction is very different for II-VI and III-V quantum dots (QDs). In the II-VI QDs, a Mn impurity influences mostly the spin-structure of an exciton. In the III-V dots, a spatial localization of hole by a Mn impurity can be very important, and ultimately yields a totally different spin structure. A Mn-doped QD with a variable number of mobile carriers represents an artificial magnetic atom. Due to the Mn-carrier interaction, the order of filling of electronic shells in the magnetic QDs can be very different to the case of the real atoms. The “periodic” table of the artificial magnetic atoms can be realized in voltage-tunable transistor structures. For the electron numbers corresponding to the regime of Hund's rule, the magnetic Mn-carrier coupling is especially strong and the magnetic-polaron states are very robust. Magnetic QD molecules are also very different to the real molecules. QD molecules can demonstrate spontaneous breaking of symmetry and phase transitions. Single QDs and QD molecules can be viewed as voltage-tunable nanoscale memory cells where information is stored in the form of robust magnetic-polaron states. To cite this article: A.O. Govorov, C. R. Physique 9 (2008).  相似文献   

19.
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III–V or II–VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centres in solids, such as P-donors in silicon and nitrogen-vacancy centres in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing between stationary spin qubits in QDs and flying photon qubits in waveguides, rapid initialization of spin qubits and qubit-specific single-shot non-demolition quantum measurement. The rapid qubit initialization may be realized by selectively enhancing certain entropy dumping channels via phonon or photon baths. The single-shot quantum measurement may be in situ implemented through the integrated photonic network. The relevance of quantum non-demolition measurement to large-scale quantum computation is discussed. To illustrate the feasibility and demand, the resources are estimated for the benchmark problem of factorizing 15 with Shor's algorithm.  相似文献   

20.
We observe large spontaneous emission rate modification of individual InAs quantum dots (QDs) in a 2D photonic crystal with a modified, high-Q single-defect cavity. Compared to QDs in a bulk semiconductor, QDs that are resonant with the cavity show an emission rate increase of up to a factor of 8. In contrast, off-resonant QDs indicate up to fivefold rate quenching as the local density of optical states is diminished in the photonic crystal. In both cases, we demonstrate photon antibunching, showing that the structure represents an on-demand single photon source with a pulse duration from 210 ps to 8 ns. We explain the suppression of QD emission rate using finite difference time domain simulations and find good agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号