首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氢水液相交换(LPCE)是从水中分离氢同位素的一种重要方法,是指氢气与液态水之间进行的氢同位素交换反应,可用于含氚重水提氚和升级,含氚废水处理及重水生产等,LPCE反应实现的关键是疏水催化剂的制备。从第一种疏水催化剂制备到现在,已经有超过1000种催化剂。尽管如此,各国研究的重点主要集中在如何提高催化剂疏水性,以延长使用寿命,提高催化活性,而一些常规催化剂更关注的基础问题几乎没有涉及,如Pt粒径大小、价态分布等Pt微观结构与催化剂活性的关系。这些问题的解决对改进催化剂制备工艺,进一步提高催化剂活性有重要作用。  相似文献   

2.
基于液相水-氢同位素催化交换的疏水催化剂研究已有近30年历史。从所报道的资料来看,目前用于重水提氚工艺中相转移的疏水催化剂主要集中在Pt-C-PTFE和Pt-SDB两类材料上。前者疏水性好,耐辐照稳定性好,后者催化活性好,但催化剂耐辐照稳定性稍差。拟在特制的SDB疏水材料上制备出催化活性好,性能稳定,满足使用要求的Pt-SDB疏水催化剂。  相似文献   

3.
常温氢氧复合是指在室温或略高于室温温度将H2化合成水,可用于装置设备故障及泄漏时产生大量H2时的应急处理,也可用于火药爆炸气体、含氚废气等的处理。国内常温氢氧复合研究主要选择Pt/SDB和Pt/PTFE为催化剂,由于氢氧复合为强放热反应,热量在高分子载体SDB,PTFE上不容易散失,Pt在反应过程中容易因热迁移而发生团聚,SDB载体在氧化条件下还容易因氧化而老化,使催化剂活性下降。文中选择具有高传热系数的泡沫镍(FN)为惰性载体,制备疏水催化剂,催化氢氧复合反应,并研究了CO和水直接冷却对疏水催化剂活性的影响。  相似文献   

4.
研究了Pt-Al2O3亲水催化剂和Pt-SDB(聚苯乙烯一二乙烯基苯)疏水催化剂对含氚空气的净化处理。通过Pt-SDB单程催化氧化氢气性能研究和潮湿环境对Pt-SDB催化剂催化氧化性能影响研究(图1)显示,Pt-SDB催化剂在室温下对H2(氚)的催化氧化具有效率高,并且不容易受潮,能在潮湿的环境下保持活性,是一种较好的含氚废气处理催化剂。  相似文献   

5.
氚操作时一旦发生氚气泄漏,需要及时将氚气氧化为氚水,然后利用材料将氚水吸收,避免污染环境。对于氚废气的氧化处理方法,主要使用催化氧化法。目前,国内主要采用以Pt-SDB(聚苯乙烯-二乙烯基苯)为代表的有机疏水催化剂和以Pt-Al2O3为代表的无机亲水催化剂。这两种催化剂各有优缺点,Pt-Al2O3催化效率高,但是需要在120~180℃下使用,不便应急。Pt-SDB可常温使用,但随着催化氧化进程,催化剂容易自然升温烧毁而引发事故。因此,需要研制一种能在常温下使用、催化效率较高的安全催化剂。为此,筛选了两种合适的无机疏水载体,在此基础上负载贵金属研制了两种无机疏水催化剂,其性能见表1。  相似文献   

6.
Pt-PTFE疏水催化剂净化含氚空气中的氚   总被引:1,自引:0,他引:1  
为对含氚空气中的氚进行净化处理,研制了Pt-PTFE疏水催化剂,并采用一套实验流程对该催化剂对氘的催化氧化效果进行考察研究。  相似文献   

7.
用CECE流程处理含氚废水时,催化交换单元中的Pt-SDB疏水催化剂会遇到少量的H2SO4,NaOH,Fe^3+,Ca^2+,Na^+,Cl^+,SO3^2+,H2S,SO2和CO,这些物质可能会引起Pt-SDB疏水催化剂的催化活性发生变化,即发生催化剂中毒。为探明Pt-SDB疏水催化剂在这些物质存在下催化活性的变化,将其装入催化活性测试床,在同样的实验条件下测试催化剂在中毒前后及再生后的催化活性,结果见图1~8。  相似文献   

8.
"用浸渍法制备了Pt/MgO催化剂,采用X射线衍射、X射线光电子能谱、透射电子显微镜和程序升温表面反应等技术对反应前后的催化剂进行了表征.甲烷部分氧化制备合成气的反应被用来考察催化剂的催化活性和稳定性.TEM结果显示活性组分Pt粒子的尺寸小于10 nm,而载体MgO的晶粒大小在50~200 nm.在固定床微反应器上进行.在800 ℃时,Pt/MgO催化剂表现了非常高的POM催化活性和稳定性,甲烷转化率和合成气的选择性在120 h内保持稳定.活性组分Pt以金属状态存在于载体的表面上,其存在状态和分散状态都很  相似文献   

9.
通过催化加氢来降低柴油中芳烃含量是提高油 品质量的一个重要过程.贵金属催化剂,如Pd或 Pt,具有非常高的反应活性,但易被原料油中的含硫 有机化合物毒化[1].因此,提高贵金属催化剂的耐 硫性能是一个重要的课题.已有的研究结果表明,贵 金属催化剂硫中毒的主要原因是硫在金属中心上产 生强化学吸附,因此,调节金属中心和硫之间的电子 相互作用可以改进催化剂的耐硫性能[2,3]. 催化生长的碳纳米纤维(CNF)是一种新型的碳 材料,其石墨层沿轴线方向闭合的特殊结构使它具 …  相似文献   

10.
直接甲醇燃料电池作为最有潜力的能源越来越受到人们的关注。本文主要采用密度泛函理论(DFT),对石墨烯基PtCu催化剂吸附甲醇的结构进行了理论研究。通过分析甲醇吸附前后前线分子轨道、电荷和吸附能的变化,发现PtCu二元金属催化剂与甲醇相互作用中,甲醇容易吸附于Pt位点上。对于PtCu二元金属的Cu位点的吸附能力与纯Cu相比变化不大,但是PtCu二元金属的Pt位点相对于纯Pt催化剂对甲醇的吸附能力却有明显的提高。因此Cu的掺杂对于提高Pt位点的活性起到促进作用  相似文献   

11.
二氧化钛载体包括二氧化钛纳米管阵列(TNTAs)和二氧化钛纳米线阵列(TNWAs)两种,载体的结构不同对催化性能有一定的影响。然而,Pt负载在TNTAs和TNWAs催化性能的比较鲜有报道。本文通过微波法制备了Pt/TNTAs和Pt/TNWAs两种催化剂,结果表明,Pt/TNTAs催化甲醇氧化效果要优于Pt/TNWAs。相较于Pt/TNWAs, Pt/TNTAs的优越催化性能可能与纳米管的限域效应有关。可见,载体的结构对催化剂的性能有很大的影响。  相似文献   

12.
催化重整是生产芳烃原料和高辛烷值清洁汽油调和组分的重要工艺。以目前应用广泛的铂锡工业重整催化剂金属含量为参比,用工业剂制备方法合成了Pt含量为0.6%的一系列铂锡重整催化剂,建立CO探针原位红外的表征方法,并对其进行系统表征,首次获得了1%以下低含量助剂Sn的CO探针红外谱图。研究结果表明,系列剂的金属Pt的CO吸附特征峰主要以线式吸附状态存在。0.6%纯Pt剂上1 826 cm-1处CO桥式吸附特征峰,因添加助剂Sn后,强度下降,而CO线式吸附特征峰的强度则增加,说明Sn的加入使得Pt的分散度增加。变温CO探针吸附原位红外研究表明,对负载质量分数0.3%的纯Sn催化剂,当脱附温度升高至120 ℃时,吸附在Sn上的CO特征峰会完全消失。对负载质量分数0.6%的纯Pt催化剂,当脱附温度升高至300℃时,吸附在Pt中心上的CO特征峰会完全消失。当Pt-Sn双金属负载质量分数Pt为0.6%、Sn为0.3%时,CO的脱附温度明显提高达350 ℃。与纯Pt剂相比,随着Sn助剂的加入,使得CO的脱附温度稍有提升,Pt-Sn催化剂Pt的CO特征峰向高波数方向移动,说明Sn的加入一定程度上减弱了活性金属Pt中心上的电荷密度。因而,CO探针原位红外是表征低金属铂锡工业重整催化剂的有效手段,为阐明多金属重整催化剂的助剂作用和研究反应机理提供重要信息。  相似文献   

13.
采用在乙二醇溶液中添加十二烷基硫酸钠(SDS)作为稳定剂的调变乙二醇还原法,制备了高分散的碳纳米管(CNTs)负载Pt电催化剂Pt/CNTs。利用紫外-可见(UV-Vis)、傅里叶变换红外(FTIR)和X射线衍射(XRD)光谱研究了催化剂的制备过程和结构,考察了Pt/CNTs制备过程中SDS的添加对其结构和甲醇电催化氧化活性的影响。结果表明,在乙二醇溶液中PtCl2-6与SDS形成了配合物,PtCl2-6能够被乙二醇完全还原;超声处理后的CNTs表面接上了含氧基团,有利于Pt粒子的吸附,催化剂上不残留有SDS;Pt/CNTs电催化剂具有典型的面心立方结构,添加SDS制备的Pt/CNTs-2电催化剂Pt高度分散,粒径更小,达4.5 nm。循环伏安(CV)测试结果表明,添加SDS制备的Pt/CNTs-2电催化剂比传统乙二醇还原法制备的Pt/CNTs-1具有更高的甲醇电催化氧化活性。  相似文献   

14.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应“从头合成”(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350 ℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO2,H2O和HCl/Cl2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C-H和C-Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h-1、20%O2和100 ppm CB,当Ce质量分数为15%、V质量分数为2.5%时,Ce-V-Ti催化降解氯苯活性最高,150 ℃能达到约60%转换率,300 ℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现,Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO2,比表面积为95.53 m2·g-1,孔容0.29 cm3·g-1,孔径6.5 nm。表面官能团主要为C-H基团和H-O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   

15.
利用一种简单的方法制备不含任何表面活性剂并具有高甲醇氧化活性的Pt和PtRu纳米电催化剂. 以CO为还原剂, CO和多壁碳纳米管(MWCNTs)为保护剂和载体,通过一步反应得到沉积在多壁碳纳米管上Pt纳米粒子,在制备过程中无需使用任何有机溶剂或表面活性剂. 利用循环伏安法和计时电流法表征了所合成催化剂的甲醇氧化活性,甲醇氧化的峰电位(ca. 0.9 V vs. RHE)处的电流密度和比质量电流高达11.6 mA/cm2 和860 mA/mgPt. 在Pt/MWCNTs表面电沉积Ru后,催化剂在低电位处的甲醇氧化活性得到提高,其在0.5和0.6 V的稳态比质量电流分别达到了20和80 mA/mg.  相似文献   

16.
 应用小角X射线散射(SAXS)技术,对乙二醇合成法、浸渍还原法和微波加热法制备的Pt/C催化剂粉体内纳米Pt颗粒的团聚效应进行了研究,得到了不同方法制备的Pt颗粒及其团聚体的特征尺寸、体积分布、表面积变化、团聚程度等信息,并利用透射电镜(TEM)对3种样品进行了测试。实验结果表明:微波加热法制备的催化剂中,Pt颗粒较好地分散于C载体上,且Pt颗粒具有尺度小、分布范围窄、总表面积大和团聚体较少等特征;常规浸渍和乙二醇还原两种方法制备的催化剂中Pt颗粒大小分布相似,但乙二醇还原法制备的催化剂总表面积和团聚体尺度更大,数量也更多。  相似文献   

17.
以氮掺杂碳纳米管为载体,在温和条件下采用简单的浸渍法制备得到铂催化剂,铂的粒径分布在4~7 nm,且氮掺杂碳纳米管无需进行预处理. 采用X射线衍射仪、扫描电子显微镜、透射电镜和能量色散X射线仪等对Pt/CNx催化剂进行了详细的表征. 结果表明,氮掺杂碳纳米管中高含量的氮原子能够有效俘获Pt(IV) 离子,且表面的含氮官能团及亲水性能的提高都有利于铂纳米粒子的分散. Pt/CNx催化剂在烯丙醇加氢反应中表现出高的催化性能及循环使用性能,这是由于铂纳米粒子的高分散性及铂与载体间强的连接性阻止了Pt的流失及聚积,从而避免生成Pt黑导致失活等.  相似文献   

18.
助剂对Pd/γ-Al2 O3催化剂上NO选择催化还原的影响   总被引:1,自引:0,他引:1  
研究了含氧条件下钯催化剂上进行丙烯选择催化还原NO的反应,考察浸渍法制备的Pd/γ-Al2O3催化剂中加入碱(土)金属或稀土氧化物助剂对NO转化率的影响,并对催化剂进行了XRD表征及在氧化气氛中饱和吸附NO后的TPD研究。结果表明,助剂CeO2、Li2O能较大幅度提高催化剂的的低温活性,使NO的最高转化率增加1-3.5倍。Pd/CeO2-Al2O3、Pd/LiO2-Al2O3催化剂有较高的Pd分散度及较强的NO解离吸附能力。并讨论了NO、N2O、NO2^-和NO3^-等吸附态物种在催化剂表面的形成及脱附特性对催化剂选择催化还原NO性能的影响。  相似文献   

19.
采用浸渍法制备了3种不同负载量的Pt/Al2O3催化剂,考察了催化剂的甲烷选择氧化性能,并用程序升温还原技术,程序升温脱附技术以及微型脉冲催化色谱技术对催化剂进行表征。结果表明,随着Pt的负载量升高,甲烷催化氧化的性能也越好,对CO与H2的选择性也越高。其中,在750℃原料气组成CH4/O2为2∶1,4%Pt负载量的催化剂,甲烷转化率达到98%以上。  相似文献   

20.
以纳米碳管和活性碳二元碳材料为催化层碳载体制备了氧扩散电极,采用稳态极化和电化学阻抗技术对其在碱性介质中氧还原反应的电催化活性进行了研究.结果表明,双载体电极比单载体纳米碳管、活性炭电极具有更高的电催化活性,纳米碳管和活性炭质量比为50∶50时双载体电极的催化活性最好;电极动力学参数测试表明,催化层中引入第二相纳米碳管载体提高了电极比表面积、电子导电性和氧还原反应速度;采用浸渍还原法在第二相纳米碳管载体中负载纳米级Pt催化剂,即使在低Pt负载量下(45.7μg/cm2)也明显改善了双载体电极的催化活性.阻抗测试表明,载Pt与未载Pt催化剂的双载体电极均受氧在薄液膜中的扩散控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号