首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
化学   1篇
物理学   5篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
利用木材、竹子、等其他生物资源制备具有发达多孔结构与丰富比表面积的活性炭,存在生产成本较高、不利于生态环境的可持续发展、使用寿命短和失效后容易造成室内环境二次污染的问题。冶金固体废弃物与生物质废弃物是工业生产与农业生产主要的副产品,因利用难度大、附加值低且成本高,导致大量堆放和填埋,不仅造成生态环境的污染,而且极大的浪费潜在资源。面对上述问题,利用冶金固体废弃物与生物质废弃物开发一种价格低廉且性能优越的生态活性炭,既是冶金固体废弃物与生物质废弃物的高附加值利用与资源可持续发展的重要途径之一,也是大幅降低改性活性炭生产成本与提高经济效益的重要途径之一。以核桃壳与电炉渣为研究对象,利用电炉渣中含有的金属氧化物对生物质废弃物进行改性处理制备用于甲醛降解的生态活性炭,依据《室内装饰装修材料人造板及其制品中甲醛释放限量》(GB18580-2017)对生态活性炭性能进行测试。利用X-射线光电子能谱(XPS)对元素含量进行测试与分析,X-射线荧光光谱仪(XRF)对化学成分进行测试与分析,傅里叶变换红外光谱仪(FTIR)对结构组成进行测试与分析,X-射线衍射仪(XRD)对矿物组成进行测试与分析,扫描电子显微镜(SEM)对微观结构进行测试与分析,激光粒度仪(LPSA)对粒度分布进行测试与分析和比表面积及孔径测定仪(BET)对孔结构进行测试与分析,以揭示核桃壳与电炉渣制备生态活性炭的机理,以及生态活性炭对甲醛的降解机理。结果表明:核桃壳超微粉与电炉渣超微粉进行复合制备具有良好降解甲醛性能的生态活性炭,不仅实现了冶金固体废弃物与生物质废弃物的高附加值的利用,而且提出了"以废治危"的新室内空气甲醛治理理念。电炉渣超微粉较好的被包裹于生态活性炭层状结构中,提高生态活性炭的粉化率,形成粒径较小的颗粒,有利于提高生态活性炭与甲醛的降解作用面积。电炉渣超微粉中含有Fe元素、Mn元素与Ti元素,Fe元素具有磁性促使大量甲醛在生物质活性炭孔结构表面形成富集,Mn元素与Ti元素对已经富集的甲醛进行催化降解,实现吸附降解与催化降解的协同作用。  相似文献   
2.
二噁英是一类含氯挥发性有机污染物,具有环境持久性、生物蓄积性和长期残留性等特性,可造成致畸、致癌和致突变等危害。铁矿烧结过程中含氯前驱物在碱性环境下通过Ullman反应或经飞灰中某些催化性成分催化生成二噁英;碳、氢、氧和氯等元素可通过基元反应“从头合成”(de novo)二噁英,是二噁英最主要的排放源之一。物理吸附技术仅能实现污染物由气相向固相转移,加重了飞灰处理负担,并存在特定温度条件下(250~350 ℃)二噁英再生风险。催化降解技术能彻底矿化有机污染物,生成CO2,H2O和HCl/Cl2,是一种避免二次污染高效节能、成本较低的方法。但由于传统催化剂活性温度区间较高,无法达到烧结烟气末端温度。选择合适的催化剂,提高催化剂低温降解活性,能实现低温、高效催化降解烧结烟气中有机污染物的目标。过渡金属Ce具有稀土金属的4f轨道配位效应和路易斯酸活性位点,对有机污染物C-H和C-Cl键活化起到至关重要的作用,掺杂过渡金属、调整活性组分比例可进一步提高铈基催化剂的抗中毒性能和降解活性。因此,本文采用溶胶凝胶法制备Ce-V-Ti复合催化剂,以氯苯为二噁英模型分子,研究了不同活性组分比例对铈基催化剂降解烧结烟气中二噁英活性影响。利用X射线衍射仪、比表面积及孔径测定仪和拉曼光谱仪对催化剂进行表征,研究Ce-V-Ti催化剂的相组成、比表面积和分子结构,并推测铈基催化剂的降解机理。结果表明,在实验室模拟烧结烟气气氛下,反应条件为GHSV=30 000 h-1、20%O2和100 ppm CB,当Ce质量分数为15%、V质量分数为2.5%时,Ce-V-Ti催化降解氯苯活性最高,150 ℃能达到约60%转换率,300 ℃能实现95%降解率。催化剂载体与活性组分之间化学交互作用,影响催化剂的降解活性。通过光谱学分析发现,Ce-V-Ti催化剂XRD图谱主要为锐钛矿相的TiO2,比表面积为95.53 m2·g-1,孔容0.29 cm3·g-1,孔径6.5 nm。表面官能团主要为C-H基团和H-O官能团。引入V作为Ce-Ti催化剂助剂,促进了Ce元素固溶,增加了催化剂表面氧空位,有利于提升催化剂降解活性。通过对催化剂机理分析,认为反应物首先通过发生亲核取代而垂直吸附于催化剂表面,再被活性组分Ce活化,活化后氯苯分子被表面活性氧分解矿化。同时,过渡金属V的低价态氧化物发生氧化反应,促进Ce的还原反应。  相似文献   
3.
钢渣是冶金工业中产生的主要固体废弃物,其产量约为每年粗钢产量的15%~20%。由于技术的局限,导致我国钢渣利用率较低,仅为年钢渣产量的10%,同时加之管理制度的不健全,导致钢渣大量露天堆放,对土地资源、地下水源,以及空气质量形成严重影响。面对上述问题,以热闷渣、电炉渣和风淬渣研发改性钢渣微粉,并且将改性钢渣微粉与复合橡胶进行复合制备改性钢渣/橡胶复合材料。依据《硫化橡胶或热塑性橡胶热空气加速老化和耐热试验》(GB/T3512—2014)对改性钢渣/橡胶复合材料进行热氧老化处理,采用平衡溶胀法测定改性钢渣/橡胶复合材料的交联密度,扫描电子显微镜(SEM)、热重分析仪(TGA)和傅里叶转换红外光谱仪(FTIR)分别测试其微观形貌、失重率和结构组成,从微观层面阐述改性钢渣/橡胶复合材料的热氧老化机理。结果表明在热氧老化前期老化作用在改性钢渣/橡胶复合材料表面,其内部以交联键形成反应为主;在热氧老化中期老化作用已经作用改性钢渣/橡胶复合材料内部,造成交联键断裂反应速度高于交联键形成反应速度,形成大量断裂交联键;在热氧老化后期由于改性钢渣/橡胶复合材料内部已经存在大量断裂交联键,导致主链及交联键断裂速度降低,交联键形成反应占优势。改性钢渣微粉以热闷渣(SiO2含量高)为原材料,有利于形成聚合物大分子链贯穿炭黑网络的结构,提高综合性能,尤其是物理机械性与滞后性;以电炉渣、风淬渣(Fe2O3含量高)制备改性钢渣微粉,有利于热传导性能的改善,不仅提高改性钢渣/橡胶复合材料的耐热性,而且提高其硬度与脆性。热氧老化过程中改性钢渣/橡胶复合材料内部在橡胶分子链α-H上发生了不同程度的氧化反应,并在橡胶分子链周围生成了羟基、羧基和醇类化合物,双键烯氢含量降低。  相似文献   
4.
以Na2SiO3、NaOH和Ca(OH)2制备碱溶液,然后利用碱溶液对钢渣进行活化处理。分别研究Na2SiO3用量、NaOH用量和Ca(OH)2用量对碱钢渣胶凝材料的力学性能影响,获得最优力学性能的碱钢渣胶凝材料。采用XRD,FTIR和SEM对最优力学性能的碱钢渣胶凝材料进行表征。结果表明,当NaOH用量为4.50 g、Na2SiO3用量为11.25 g和Ca(OH)2用量为6.75 g时,碱钢渣胶凝材料的力学性能最优。Na2SiO3对碱钢渣胶凝材料的7 d抗压强度影响显著,NaOH对碱钢渣胶凝材料的3 d抗压强度影响显著,Ca(OH)2对碱钢渣胶凝材料的28 d抗压强度影响显著。Na2SiO3,NaOH和Ca(OH)2碱性物质的加入促使钢渣形成稳定的C-S-H凝胶与沸石类相。  相似文献   
5.
氨选择性催化还原NO_x技术可以有效控制氮氧化物的排放。V_2O_5-WO_3(MoO_3)/TiO_2脱硝催化剂虽然已经工业化应用,但其工作温度偏高,不能满足低温宽工作温度窗口等工况的需要。因此,开发具有宽工作温度窗口的低温脱硝催化剂成为研究热点。其中,铁基催化剂因其具有良好的氧化还原性,以及储量丰富、价格低廉、无毒无害等特点,使其在低温氨选择性催化还原(NH_3-SCR)反应中得到了广泛研究。基于Fe_2O_3在NH_3-SCR催化体系中所起的作用不同,从Fe_2O_3作为载体、助剂、活性组分以及新型结构的铁基催化剂等方面系统地介绍了近年来铁基催化剂在NH_3-SCR反应中的最新研究进展。此外,还总结了铁基催化剂的NH_3-SCR反应机理以及抗水抗硫性,并对该领域未来可能的发展方向进行了展望。  相似文献   
6.
钢渣作为炼钢过程中产生的固体废弃物,矿渣作为高炉炼铁过程中的副产品,其存在难以利用与附加值的问题。面对上述问题,利用钢渣与矿渣开发一种价格低廉的复合橡胶填料用于橡胶领域。采用磁选热闷渣、未磁选热闷渣、矿粉和助磨-改性复合剂制备改性钢渣-矿粉复合橡胶填料,并且用于复合橡胶体系。研究磁选热闷渣用量、未磁选热闷渣用量、矿粉用量和助磨-改性复合剂用量对改性钢渣-矿粉基橡胶复合材料性能的影响,并且分析其影响机理。结果表明,以磁选热闷渣用量150 g、未磁选热闷渣用量150 g、矿粉用量150 g和助磨-改性复合剂用量9 g制备的改性钢渣-矿粉复合橡胶填料补强-阻燃性能最优。按改性钢渣-矿粉复合橡胶填料∶炭黑质量比20∶30制备的改性钢渣-矿粉基橡胶复合材料,其拉伸强度为21.83 MPa、撕裂强度为46.23 kN·m-1、邵尔A硬度为62、磨耗量为159 mm3、极限氧指数为19.8%与燃尽时间为187 s。助磨-改性复合剂不仅降低粒径尺寸、提高粒径均匀性,而且改善钢渣-矿粉复合橡胶填料的表面结构与性质,有利于改性钢渣-矿粉复合橡胶填料在复合橡胶体系中均匀分散,提高相容性。钢渣与矿粉在助磨-改性复合剂的作用下发生化学反应,改变了钢渣与矿粉的物相组成,提高补强性能与阻燃性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号