首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
In this study, a modified quick, easy, cheap, effective, rugged and safe method coupled with gas chromatography with electron capture detection was established to determine dimethachlon residues in paddy soil, rice husk, rice straw, brown rice and cooked rice. The limits of quantification of dimethachlon were 0.01 mg/kg for paddy soil, brown rice and cooked rice and 0.02 mg/kg for rice straw and rice husk. The mean recoveries were in the range 78.59–104.7% with relative standard deviation values of <10% for dimethachlon in the five matrices. For field experiments, the final residues of dimethachlon in paddy soil were < 0.05 mg/kg and were < 1.21 mg/kg in rice straw from six sites. The final residues of dimethachlon in the brown rice at 21, 28 and 35 days after spraying from six sites were 0.08–7.58 mg/kg, and 0.16–30.1 mg/kg in rice husk. Our six test sites covered the main rice–producing areas of China. The routine rice cooking process of a Chinese family could apparently increase the removal of dimethachlon in rice compared with brown rice, and the reduction ratios were > 96%.  相似文献   

2.
A chiral liquid chromatography–tandem high resolution mass spectroscopic method was developed for the analysis of indoxacarb enantiomers in rice plants, rice hulls and brown rice. Chiral separation of two enantiomers was carried out on a Superchiral S‐OD column maintained at 20°C and eluted with 0.3 mL/min methanol. Samples were extracted by acetonitrile solution with ultrasound and cleansed by dispersive solid‐phase extraction of 50 mg of primary secondary amine and 50 mg of C18. This method was successfully used to study the degradation and residues of two enantiomers with enriched S‐indoxacarb (2.33S/1R) and pure S‐indoxacarb in rice plants. The half‐lives of R‐indoxacarb and S‐indoxacarb were 4.20–4.33 and 3.45–3.57 days in rice plants during the degradation of enriched S‐indoxacarb in Guizhou and Hunan, respectively, whereas the half‐lives of pure S‐indoxacarb were 2.68 and 3.69 days in Guizhou and Hunan, respectively. The results indicated that preferential S‐indoxacarb degradation occurred and that enantiomeric transformation was absent in the total experiment periods of pure S‐indoxacarb in rice plants. The final residue concentrations of indoxacarb enantiomers in brown rice were significantly less than those in rice plants and rice hulls in the same rice field after applying indoxacarb SC and indoxacarb EC.  相似文献   

3.
A sensitive analytical method for the simultaneous determination of trifloxystrobin and its metabolite trifloxystrobin acid in rice including straw, bran, brown rice and soil was developed by using ultra high performance liquid chromatography coupled with tandem mass spectrometry. The fungicide trifloxystrobin and its metabolite trifloxystrobin acid were extracted using acetonitrile with 1% formic acid v/v and subsequently cleaned up by primary secondary amine, octadecylsilane or graphitized carbon black prior to ultra high performance liquid chromatography coupled with tandem mass spectrometry. The determination of two target compounds was achieved in less than 3 min using an electrospray ionization source in positive mode. The limits of detection were below 0.22 μg/kg and the limits of quantification did not exceed 0.74 μg/kg in all matrices, which were much lower than the maximum residue levels established by the Codex Alimentarius Commission. The overall average recoveries in four matrix at three levels (0.1, 1.0 and 5.0 mg/kg) ranged from 74.2 to 107.4% with a relative standard deviations of less than 7.8% (n = 5) for both analytes. The method was demonstrated to be convenient and reliable for the routine monitoring of trifloxystrobin and its metabolite. The developed method was validated and applied for the analysis of degradation study samples.  相似文献   

4.
Dissipation dynamics of fenoxaprop-p-ethyl (FPPE) and fenoxaprop acid (FPA) (metabolite) in rice field conditions was investigated for two consecutive seasons. FPPE dissipated rapidly in soil with average half life of 1.42–2.19 days. Dissipation followed first-order kinetics. The method was validated in terms of accuracy, linearity, specificity and precision. Linearity was in the range of 0.005–5 µg mL?1 with limit of detection as 0.002 and 0.001 µg mL?1 for fenoxaprop-p-ethyl and fenoxaprop acid, respectively. Quantitation limit in soil, grain, straw and husk were 0.005, 0.008, 0.01 and 0.01 µg g?1 for fenoxaprop-p-ethyl, and 0.005, 0.01, 0.01 and 0.01 µg g?1 for fenoxaprop acid, respectively. Recovery in soil, rice grains, straw and husk ranged from 81.60–93.40, 77.85–87.00, 75.20–84.40 and 76.00–87.20% for FPPE and 82.50–88.20, 76.25–83.00, 74.80–83.60 and 75.00–85.40% for FPA, respectively. Below detectable limit of residues of FPPE and metabolite were observed in soil, rice grain, husk and straw samples at harvest. FPPE and FPA were of short persistence under field conditions and residues were below European Union-Maximum Residue Limits in all matrices that would cause adverse effect on environment and human/animal health.  相似文献   

5.
建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)测定水稻基质中阿维菌素残留量,考察了基质效应,并对实际样品进行了检测.稻田土、稻壳、糙米和稻杆经乙腈振荡提取,稻田水经乙酸乙酯液液分配提取后,用C18固相萃取小柱或弗罗里硅土柱净化,采用UPLC-MS/MS正离子扫描测定残留的阿维菌素.稻田土、稻田水和糙米的3种添加浓度(1.0,10.0和100 μg/kg或μg/L)的平均回收率为84%~107%,相对标准偏差为4.7%~13.6%.稻壳和稻杆的2档添加浓度(10.0和100 μg/kg)的平均回收率为90%和103%,相对标准偏差为8.4%~12.9%.本方法在稻田水、糙米和稻田土中的检出限为0.3μg/kg在稻壳和稻杆中检出限为3.0 μg/kg,低于欧盟和日本在稻米中制定的阿维菌素最大残留限量值.阿维菌素在2.0~100 μg/L范围内线性关系良好( r> 0.999).  相似文献   

6.
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals.  相似文献   

7.
The present study was carried out to develop an analytical method for simultaneously detecting and quantifying sulfoxaflor and its metabolites (X11721061, X11719474) in brown rice and rice straw using liquid chromatography–tandem mass spectrometry. The parent compound and its metabolites were extracted and purified using original ‘QuEChERS’ method with modification. The matrix-matched calibration curve of sulfoxaflor and its metabolites in both matrices achieved good linearity with determination coefficients (R2) ≥0.9944. The overall recoveries of sulfoxaflor at two fortification levels (rice: 0.2 and 1.0 mg/kg; rice straw: 0.4 and 2.0 mg/kg) ranged from 97.37% to 107.71% with relative standard deviations (RSDs) <5%. On the other hand, the recoveries of both metabolites (X11721061 and X11719474) at 0.1 and 0.5 mg/kg (rice) and 0.2 and 1.0 mg/kg (rice straw) were satisfactory with values ranging from 83.70 % to 112.60% with RSDs <8%. During storage at ?20°C, the analyte and its metabolites were stable for up to 87 days. The limits of quantification of 0.02 mg/kg were lower than the maximum residue limit (0.2 mg/kg) set by the Korean Ministry of Food and Drug Safety for brown rice. The method was successfully applied to paddy field treated with different programme schedules and a preharvest interval of 7 days was proposed based upon the current study. In sum, the developed method is accurate and reproducible for ensuring the reliable determination of sulfoxaflor (and its metabolites) in harvested rice grain and straw samples from the field. The residual level of parent compound does not seem to pose any hazardous effect and treated rice could be safely used for consumption.  相似文献   

8.
We developed an analytical method using liquid–liquid extraction (LLE) and liquid chromatography–tandem mass spectrometry (LC‐MS/MS) to detect and quantify tebufenozide (TEB) and indoxacarb (IND) residues in animal and aquatic products (chicken muscle, milk, egg, eel, flatfish, and shrimp). The target compounds were extracted using 1% acetic acid (0.1% acetic acid for egg only) in acetonitrile and purified using n‐hexane. The analytes were separated on a Gemini‐NX C18 column using (a) distilled water with 0.1% formic acid and 5 mm ammonium acetate and (b) methanol with 0.1% formic acid as the mobile phase. All six‐point matrix‐matched calibration curves showed good linearity with coefficients of determination (R2) ≥0.9864 over a concentration range of 5–50 μg/kg. Intra‐ and inter‐day accuracy was expressed as the recovery rate at three spiking levels and ranged between 73.22 and 114.93% in all matrices, with a relative standard deviation (RSD, corresponding to precision) ≤13.87%. The limits of quantification (LOQ) of all target analytes ranged from 2 to 20 μg/kg, which were substantially lower than the maximum residue limits (MRLs) specified by the regulatory agencies of different countries. All samples were collected from different markets in Seoul, Republic of Korea, and tested negative for tebufenozide and indoxacarb residues. These results show that the method developed is robust and may be a promising tool to detect trace levels of the target analytes in animal products.  相似文献   

9.
This study was undertaken to develop and validate a single multiresidue method for the monitoring of ten multiclass emerging contaminants, viz. ceftiofur, clopidol, florfenicol, monensin, salinomycin, sulfamethazine, sulfathiazole, sulfamethoxazole, tiamulin, and tylosin in agricultural soil. Samples were extracted using an acetate‐buffered, modified quick, easy, cheap, effective, rugged, and safe method followed by liquid chromatography with tandem mass spectrometric analysis in positive ion mode. Separation on an Eclipse Plus C18 column was conducted in gradient elution mode using a mobile phase of methanol (A) and distilled water (B), each containing 0.1% formic acid and 5 mM ammonium formate. The linearity of the matrix‐matched calibrations, expressed as determination coefficients, was good, with R 2 ≥ 0.9908. The limits of quantification were in the range 0.05–10 μg/kg. Blank soil samples spiked with 4 × and 20 × the limit of quantification provided recovery rates of 60.2–120.3% (except sulfamethoxazole spiked at 4 × the limit of quantification, which gave 131.9%) with a relative standard deviation < 13% (except clopidol spiked at 20 × the limit of quantification, which gave 25.2%). This method was successfully applied to the monitoring of 51 field‐incurred agricultural loamy‐sand soil samples collected from 17 provincial areas throughout the Korean Peninsula. The detected and quantified drugs were clopidol (≤ 4.8 μg/kg), sulfathiazole (≤ 7.7 μg/kg), sulfamethazine (≤ 6.6 μg/kg), tiamulin (≤ 10.0 μg/kg), and tylosin (≤ 5.3 μg/kg). The developed method is simple and versatile, and can be used to monitor various classes of veterinary drugs in soil.  相似文献   

10.
A novel and simple supported ionic‐liquid‐based solid‐phase extraction method for the determination of triazine herbicides in rice was developed. Glass slides were functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, and were used for the simultaneous extraction of seven triazine herbicides in rice samples. The effects of the type of extraction solvent, the extraction time, the type and volume of loading solvent, and the type of eluting solvent on the extraction efficiency were investigated and optimized. Under the optimum operation conditions, the limits of detection for seven triazine herbicides in rice samples obtained by high‐performance liquid chromatography were 3.16–5.42 ng/g, which were lower than the maximum residue levels established by various organizations. The linear correlation coefficients were higher than 0.9975 in the concentration range of 0.015–1.08 μg/g for the seven triazine herbicides. The recoveries of the seven triazine herbicides at the two concentration levels of 0.15 and 0.45 μg/g are between 82.47 and 104.21%, with relative standard deviations of 0.69–9.19%. The intra‐ and inter‐day (n = 5) precisions for all triazine herbicides at the spiked level of 0.30 μg/g were 1.72–11.71%.  相似文献   

11.
Phenamacril is a new broad‐spectrum fungicide that is commonly used for the control of fungal diseases in wheat and rice. In this study, ultra‐high‐performance liquid chromatography–tandem mass spectrometry was used to establish a method for analyzing the residual phenamacril in flour and rice based on the improved QuEChERS (quick, easy, cheap, effective, rugged and safe) method using Z‐Sep+ as the adsorbent in the pre‐treatment process. The average recovery of phenamacril in flour and rice was 82.2–96.0%, the relative standard deviation was 2.1–5.6% and the limit of quantification was 0.5 μg/kg. The accuracy and sensitivity of this method meet the requirements for residue analysis. The method was applied to commercially available flour and rice samples, and the detected concentrations of phenamacril were 0.005–0.033 mg/kg. This method provides technical support for the safety evaluation of phenamacril.  相似文献   

12.
A sensitive, rapid and easy analytical method was validated for the determination of quinoid niclosamide (LDS) molluscicide in water, rice and soil using a QuEChERS extraction procedure and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection. The LDS was extracted by using acetonitrile and then cleaned up by using dispersive solid-phase extraction with florisil and C18 sorbents. The determination of the target compound was achieved in less than 3 min using an electrospray ionisation source in negative mode. The overall average recoveries for this method in water, rice and soil matrix at three fortified levels ranged from 82.54 to 99.9%, with relative standard deviations in the range of 1.51 to 4.86% (n = 5). The calculated limits of detection were lower than 0.1 µg kg?1 and quantification was 5 µg kg?1; these values were much lower than the maximum residue levels established by the Australian standard (0.01 mg kg?1). The results of the method validation confirmed that this proposed method is convenient and reliable for the determination of LDS molluscicide in water, rice and soil samples.  相似文献   

13.
A simple and rapid multiplug filtration cleanup method based on multiwalled carbon nanotubes was developed to determine 124 pesticide residues in rice, wheat, and corn, which could be done in a few seconds without conditioning and elution steps. Various combinations of sorbents were optimized for each matrix with a dispersive solid‐phase extraction procedure to get a satisfactory recovery and clean‐up performance. Good linearity was obtained for all pesticides with calibration curve coefficients larger than 0.9958. Most recoveries for the majority pesticides were between 70 and 120% (n = 5) with relative standard deviations below 20%. The limit of detection was 0.1–1.3 μg/kg, and the limit of quantification was 0.2–4.3 μg/kg for the pesticides in all matrices. The work suggests that the multiplug filtration cleanup method is better than the dispersive solid‐phase extraction method and it could be applied to routinely monitor pesticide residues in market samples.  相似文献   

14.
Residue dissipation of hexaconazole and isoprothiolane in the rice field ecosystem was determined by gas chromatography coupled with electron capture detector. Hexaconazole and isoprothiolane (33% microemulsion) were applied at two dosages, 396 g a.i. ha–1 (the recommended dosage) and 594 g a.i. ha–1 (1.5 times the recommended dosage) in the experimental fields in Guizhou, Hunan and Heilongjiang provinces, China, during 2011–2012. The limits of detection and limits of quantification in brown rice were 0.006 and 0.02 mg kg–1 for hexaconazole, 0.0072 and 0.024 mg kg–1 for isoprothiolane, respectively, and they were much below the maximum residue limits (MRLs, 0.1 mg kg–1 for hexaconazole and 1.0 mg kg–1 for isoprothiolane) set by China. Average recoveries of hexaconazole in water, soil, rice plants and brown rice ranged from 77.3% to 93.8% and for isoprothiolane ranged from 78.1% to 99.9% with relative standard deviations < 10%. The results showed that during harvest, the terminal residue levels of hexaconazole and isoprothiolane in brown rice samples were well below the MRLs of China following the interval of 7 days after last application. Therefore, a dosage of 396 g a.i. ha–1 was recommended, which could be considered as safe to human beings.  相似文献   

15.
A new method for simultaneous determination of 36 pesticides, including 15 organophosphorus, six carbamate, and some other pesticides in soil was developed by liquid chromatography with tandem quadruple linear ion trap mass spectrometry. The extraction and clean‐up steps were optimized based on the quick, easy, cheap, effective, rugged, and safe method. The data were acquired in multiple reaction monitoring mode combined with enhanced product ion to increase confidence of the analytical results. Validation experiments were performed in soil samples. The average recoveries of pesticides at four spiking levels (1, 5, 50, and 100 μg/kg) ranged from 63 to 126% with relative standard deviation below 20%. The limits of detection of pesticides were 0.04–0.8 μg/kg, and the limits of quantification were 0.1–2.6 μg/kg. The correlation coefficients (r2) were higher than 0.990 in the linearity range of 0.5–200 μg/L for most of the pesticides. The method allowed for the analysis of the target pesticides in the lower μg/kg concentration range. The optimized method was then applied to the test of real soil samples obtained from several areas in China, confirming the feasibility of the method.  相似文献   

16.
A simple and rapid analytical method for the detection of trifloxystrobin, trifloxystrobin acid and tebuconazole in soil, brown rice, paddy plants and rice hulls was established and validated by liquid chromatography with tandem mass spectrometry. Acceptable linearity (R2 > 0.99), accuracy (average recoveries of 74.3–108.5%) and precision (intra- and inter-day relative standard deviations of 0.9–8.8%) were obtained using the developed determination approach. In the field trial, the half-lives of trifloxystrobin and tebuconazole in paddy plants were 5.7–8.3 days in three locations throughout China, and the terminal residue concentrations of trifloxystrobin and tebuconazole were <100 and 500 μg/kg (maximum residue limits set by China), respectively, at harvest, which indicated that, based on the recommended application procedure, trifloxystrobin and tebuconazole are safe for use on rice. The risk assessment results demonstrated that, owing to risk quotient values of both fungicides being <100%, the potential risk of trifloxystrobin and tebuconazole on rice was acceptable for Chinese consumers. These data could provide supporting information for the proper use and safety evaluation of trifloxystrobin and tebuconazole in rice.  相似文献   

17.
Rice (Oryza sativa L.) accumulates large amounts of silicon which improves its growth and health due to enhanced resistance to biotic and abiotic stresses. Silicon uptake and loading to xylem in rice are predominantly active processes performed by transporters encoded by the recently identified genes Lsi1 (Si influx transporter gene) and Lsi2 (Si efflux transporter gene). Silicon deposition in rice during translocation to upper plant tissues is known to discriminate against the heavier isotopes 29Si and 30Si, resulting in isotope fractionation within the plant. We analyzed straw and husk samples of rice mutants defective in Lsi1, Lsi2 or both for silicon content and δ29Si using isotope ratio mass spectrometry (IRMS) and compared these results with those for the corresponding wild‐type varieties (WT). The silicon content was higher in husk than in straw. All the mutant rice lines showed clearly lower silicon content than the WT lines (4–23% Si of WT). The δ29Si was lower in straw and husk for the uptake defective mutant (lsi1) than for WT, albeit δ29Si was 0.3‰ higher in husk than in straw in both lines. The effect of defective efflux (lsi2) differed for straw and husk with higher δ29Si in straw, but lower δ29Si in husk while WT showed similar δ29Si in both fractions. These initial results show the potential of Si isotopes to enlighten the influence of active uptake on translocation and deposition processes in the plant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A fast and an efficient ultrasound‐assisted extraction technique using a lower density extraction solvent than water was developed for the trace‐level determination of tebuconazole in garlic, soil and water samples followed by capillary gas chromatography combined with nitrogen–phosphorous selective detector (GC–NPD). In this approach, ultrasound radiation was applied to accelerate the emulsification of the ethyl acetate in aqueous samples to enhance the extraction efficiency of tebuconazole without requiring extra partitioning or cleaning, and the use of capillary GC–NPD was a more sensitive detection technique for organonitrogen pesticides. The experimental results indicate an excellent linear relationship between peak area and concentration obtained in the range 1–50 μg/kg or μg/L. The limit of detection (S/N, 3 ± 0.5) and limit of quantification (S/N, 7.5 ± 2.5) were obtained in the range 0.2–3 and 1–10 μg/kg or μg/L. Good spiked recoveries were achieved from ranges 95.55–101.26%, 96.28–99.33% and 95.04–105.15% in garlic, Nanivaliyal soil and Par River water, respectively, at levels 5 and 20 μg/kg or μg/L, and the method precision (% RSD) was ≤5%. Our results demonstrate that the proposed technique is a viable alternative for the determination of tebuconazole in complex samples.  相似文献   

19.
A novel and sensitive method was developed for the determination of tebuconazole enantioselectively using reversed‐phase LC‐MS/MS. The separation and determination were performed using on an amylose‐based chiral stationary phase, a Lux 3u Amylose‐2 column (150 mm×2.0 mm), under isocratic conditions at 0.3 mL/min flow rate. A series of chiral stationary phases were investigated and the effect of mobile phase composition on the enantioseparation was discussed. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under optimal conditions, the overall mean recoveries for two enantiomers from the soil, tomato, cucumber, pear and apple samples were 79.3–101.1% with 2.8–11.5% intra‐day relative standard deviations (RSDs) and 4.1–8.6% inter‐day RSDs at 5, 25 and 50 μg/kg levels; the mean enantiomer recoveries from the water samples were 89.6–101.9% with 3.3–10.2% intra‐day RSDs and 5.1–7.7% inter‐day RSDs at 0.25, 0.5 and 2.5 μg/kg levels. The limits of detection (LODs) for all enantiomers in tomato, cucumber, pear, apple, soil and water were less than 0.6 μg/kg, whereas the limit of quantification (LOQ) did not exceed 2.0 μg/kg. The results indicate that this proposed method is convenient and reliable for the enantioselective determination of tebuconazole enantiomers in foods and environment samples.  相似文献   

20.
New synthesized reagent 2,6‐diacetylpyridine bis‐4‐phenyl‐3‐thiosemicarbazone (2,6‐DAPBPTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a reddish brown colored complex with 2,6‐DAPBPTSC, which is extracted into isoamylalcohol, under optimum conditions. The maximum absorption of the isoamylalcohol extract is measured at 400 nm. Beer's law is applied in the range 0.6‐6.0 ppm of cobalt(II). The molar absorptivity and Sandell's sensitivity of the complex is calculated as 2.2 × 104 L mol?1 cm?1 and 2.68 × 10?3 μg cm?2, respectively. An adequate linearity with a correlation coefficient value of 0.969 is obtained for the Co(II)‐2,6‐DAPBPTSC complex. The instability constant of the complex, calculated from Asmus' method is 3.75 × 10?4 The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.388 and the detection limit a value is 0.0028 μg mL?1. The method is successfully employed for the determination of cobalt(II) in real samples, such as vegetables, soil, water samples, standard alloy samples, and the performance of the present method was evaluated in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of the present method is an inter comparison of the experimental values, using atomic absorption spectrometer (AAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号