首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Introduction Since 19541 the polymeric separation media has attracted much attention due to their chemical stability over the entire pH range. The rigid, highly cross-linked styrene copolymers were first used for chromatography by Moore.2 The macroporous copolymers currently available are not only chemically stable but also more resistant to mechanical forces prevailing in a column and therefore are comparable to the traditional packings based on silica gel. Most polymer separation media are …  相似文献   

2.
Gong B  Zhu J  Li L  Qiang K  Ren L 《Talanta》2006,68(3):666-672
The monodisperse, 5.0 μm non-porous poly(glycidylmethacrylate-co-ethylenedimethacrylate) (PGMA/EDMA) beads were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. Based on this media, a weak cation exchange (WCX) stationary phase for high performance liquid chromatography (HPLC) was synthesized by a new chemical modification method. The prepared resin has advantages of biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery and good resolution for proteins. The measured bioactivity recovery for lysozyme was 97 ± 5%. The dynamic protein loading capacity of the synthesized WCX packings was 20.5 mg/g. Four proteins were completely separated in 3.0 min using the synthesized WCX stationary phase. The experimental results show that the obtained WCX resin has very weak hydrophobicity. The WCX resin was also used for the rapid separation and purification of lysozyme from egg white in 3.0 min with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70.264 IU/mg, respectively.  相似文献   

3.
The monodisperse, macroporous poly(glycidyl methacrylate- co-ethylene dimethacrylate) beads were synthesized by a single-step swelling and polymerization method. Based on this media, a weak cation exchange (WCX) stationary phase for HPLC was synthesized by a new chemically modified method. The prepared resin has advantages for biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery, and good resolution for proteins. The measured bioactivity recovery for lysozyme was 98+/-5%. The dynamic protein loading capacity of the WCX packings was 17.3 mg g(-1). The experimental results show that the synthesized WCX resin has very weak hydrophobicity.  相似文献   

4.
李龙  马桂娟  龚波林 《色谱》2005,23(6):567-572
采用分散聚合法制备种子和“一步种子溶胀聚合法”制备了粒径为6~15 μm的单分散多孔氯甲基苯乙烯-二乙烯苯微球。该微球经化学改性后得到一种亲水性良好的新型高效弱阳离子交换色谱固定相。详细考察了该固定相的表面亲水性、对标准蛋白的分离性能和盐的种类对蛋白质保留行为的影响。考察结果表明该固定相是一种性能优异的弱阳离子交换色谱固定相。将其应用于鸡蛋清中溶菌酶的快速分离纯化,纯化后的溶菌酶纯度高于96%,比活高达71184 U/mg。  相似文献   

5.
杨春霞  周晶  龚波林 《色谱》2009,27(2):191-196
以自制的5.0 μm单分散大孔亲水交联聚甲基丙烯酸环氧丙酯(PGMA/EDMA)微球为基质,对其表面进行化学改性,合成弱阳离子交换色谱填料(WCX)。详细考察了该填料对标准蛋白质的分离性能、表面亲水性能、稳定性和重现性以及流速对蛋白保留的影响。实验结果表明,该色谱填料对蛋白的分离性能、重现性及稳定性良好;在流速为3 mL/min时,采用线性梯度洗脱,6 min内可分离4种标准碱性蛋白质,以溶菌酶测定的该填料的动力学吸附容量为29.86 mg/g。将其用于鱼精蛋白的分离纯化,经反相高效液相色谱测定纯化后鱼精蛋白的纯度为99.2%;与商品Shodex IEC SP-825强阳离子交换色谱柱比较,纯化结果几乎一样。  相似文献   

6.
The monodisperse, poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads with macroporous in the range of 8.0-12.0 microm were prepared by a single-step swelling and polymerization method. The seed particles prepared by dispersion polymerization exhibited good absorption of the monomer phase. The pore size distribution of the beads was evaluated by gel permeation chromatography and mercury instrusion method. Based on this media, a hydrophobic interaction chromatographic (HIC) stationary phase for HPLC was synthesized by a new chemically modified method. The prepared resin has advantages for biopolymer separation, high column efficiency, low column backpressure, high protein mass recovery and good resolution for proteins. The dynamic protein loading capacity of the synthesized HIC packings was 40.0 mg/ml. Six proteins were fast separated in less than 8.0 min using the synthesized HIC stationary phase. The HIC resin was firstly used for the purification and simultaneous renaturation of recombinant human interferon-gamma (rhIFN-gamma) in the extract solution containing 7.0 mol/l guanidine hydrochloride with only one step. The purity and specific bioactivity of the purified of rhIFN-gamma was found more than 95% and 1.3 x 10(8) IU/mg, respectively.  相似文献   

7.
Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC) retention mechanism. The measured bioactivity recovery for lysozyme was (96 ± 5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively.  相似文献   

8.
A novel stationary phase for weak cation exchange (WCX) chromatography was prepared by "grafting from" strategy. Surface initiated atom transfer radical polymerization (ATRP) of acrylic acid (AA) was conducted in toluene medium, starting from the macromolecule initiators of poly(4‐vinylbenzyl chloride‐co‐divinylbenzene) (PCMS/DVB) beads. The amounts of poly(acrylic acid) grafted chains with different ATRP formulations were calculated based on the elemental analyses. The poly(acrylic acid) grafted beads obtained with different ATRP formulations were tried as chromatographic packings in the separation of proteins by ion‐exchange chromatography. The effect of the poly(acrylic acid) grafted chain lengths on PCMS/DVB beads for the separation of proteins was investigated in details. Simultaneously, characterization of the column was investigated as ion chromatographic stationary phase for the separation of inorganic cations. The results show that poly(acrylic acid) grafted columns had excellent performance for separation of proteins and inorganic cations. The highest of the dynamic capacity of the column was 35.55 mg/mL. The columns were provided with high column efficiency.  相似文献   

9.
王建山  夏红军  万广平  刘家玮  白泉 《色谱》2016,34(12):1228-1233
以硅胶为基质、氨基己酸为配基制备了一种新型弱阳离子交换/疏水(WCX/HIC)双功能混合模式色谱固定相。该固定相配基具有一定的疏水性且含有羧基,在高盐浓度下表现为HIC的性质,可作为HIC固定相使用;在低盐浓度条件下表现为离子交换的性质,可作为WCX固定相使用。分别考察了该介质在WCX和HIC两种模式下对标准蛋白质的分离性能,并与商品柱进行比较。结果表明,所合成的WCX/HIC双功能固定相在WCX和HIC两种模式下对蛋白质均有较高的分离度和选择性,且分离能力与商品柱相当,两种模式下标准蛋白质的质量和活性回收率均大于93%,表明该柱具有“一柱二用”的功能,适于生物大分子的分离纯化。基于此双功能色谱柱构建的在线单柱二维液相色谱(2DLC-1C)可在60 min内实现8种蛋白质的快速分离。在70 min内完成了对蛋清中溶菌酶的二维纯化,纯度可达到98.3%。该技术中一根色谱柱可当作两根色谱柱使用,对蛋白质组学研究和重组蛋白药物的生产具有重要的应用价值。  相似文献   

10.
朱金霞  卜春苗  龚波林 《色谱》2006,24(2):129-134
采用分散聚合法制备小颗粒种子及“一步种子溶胀聚合”法成功地制备了粒径为3.0 μm的无孔单分散亲水性交联聚甲基丙烯酸环氧丙酯树脂,其表面经水解、环氧化、再水解后与氯磺酸反应,制备了一种新型的强阳离子交换色谱填料(SCX)。详细考察了该填料对标准蛋白质的分离性能及流动相中盐的种类、有机溶剂、流速等对蛋白质保留的影响。实验结果表明,在流速为4 mL/min时,采用线性梯度洗脱,1.0 min内可快速分离4种标准蛋白质,蛋白质的保留符合阳离子交换色谱规律。将SCX应用于快速纯化鸡蛋清中的溶菌酶和猪心中的细胞色素-C,取得了较好的效果。  相似文献   

11.
A novel dual‐retention mechanism mixed‐mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high‐salt‐concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low‐salt‐concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion‐exchange chromatography and HIC columns. The results indicated that the novel dual‐retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a ‘2D column’. In addition, the mixed retention mechanism of proteins on this ‘2D column’ was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual‐retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this ‘2D column’, a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
以3.0μm无孔单分散亲水性交联聚甲基丙烯酸环氧丙酯树脂为基质,将其表面经新的化学方法改性后制备了一种新型的无孔中强阳离子交换色谱填料。详细考察了该无孔填料对标准蛋白分离性能,有机溶剂、pH、流动相盐种类和流速等对蛋白质保留的影响。实验结果表明,在流速为4 mL/min时,线性梯度时间在2.0 min内可快速分离4种标准蛋白,蛋白质的保留符合阳离子交换色谱规律。将其应用于快速纯化鸡蛋清中的溶菌酶,取得较好效果。  相似文献   

13.
Click chemistry was applied to immobilize three kinds of alkyne-carboxylic acids onto azide-modified silica gel to prepare three novel stationary phases for weak cation exchange chromatography(WCX).The developed protocol combines the benefits of operational simplicity,exceptionally mild conditions and high surface loadings.Six kinds of standard proteins were separated completely on the novel packings.Compared with commercial WCX columns,the three kinds of novel WCX packings prepared by click chemistry approach have better resolution and selectivity.Lysozyme was purified successfully from egg white with the novel WCX column by one step.The purity was more than 97%and a high specific activity was achieved to be 81,435 U/mg.The results illustrate the potential of click chemistry for preparation of stationary phase for IEC.  相似文献   

14.
"Click chemistry" is defined as a class of robust and selective chemical reactions affording high yields and is tolerant to a variety of solvents (including water), functional groups, and air. In this study, click chemistry was used as an effective strategy for coupling three alkyne-carboxylic acids onto the azide-silica to obtain three novel stationary phases of weak cation exchange chromatography, which were characterized with FTIR and elemental analysis. Six kinds of standard proteins, such as myoglobin, RNase A, RNase B, cytochrome C, α-chymotrypsin A, and lysozyme, were separated completely with the three novel weak cation exchange chromatography stationary phases. Compared with commercial weak cation exchange chromatography columns, the three kinds of novel weak cation exchange chromatography packings prepared by click chemistry approach have better resolution and selectivity. The mass recovery of more than 97% was obtained for all the tested proteins, and the bioactivity recovery of lysozyme on the prepared column was determined to be 96%. In addition, lysozyme was purified successfully from egg white with the novel weak cation exchange chromatography column by one step. The purity was more than 97% and a high specific activity was achieved to be 81 435 U/mg. The results illustrate the potential of click chemistry for preparing stationary phase for ion-exchange chromatography.  相似文献   

15.
A new type of weak cation exchanger, tetrazole-functionalized silica, was developed for bioseparation. It was prepared conveniently by modifying silica gel initially with gamma-glycidoxypropyltrimethoxysilane, then with 3-hydroxypropionitrile and finally with ammonium-catalyzed (3+2) azide-nitrile cycloaddition, which is an element of click chemistry. The prepared stationary phase was characterized and evaluated for its separation performance, protein retention behavior, loading capacity, protein recovery and chemical stability. The results show that the stationary phase developed has excellent performance for protein separations with high mass recoveries, and has long-term stability. Some remarkable differences were observed between this new exchanger and a carboxylic methyl-functionalized ion exchanger, which is typically used in weak cation-exchange chromatography of proteins. The obtained column was also used for the purification of lysozyme from chicken egg white, and the purity and specific bioactivity of the obtained lysozyme were about 90% and 67 IU/mg, respectively.  相似文献   

16.
分别用乙二胺、二乙胺、三乙胺将自制的以甲基丙烯酸缩水甘油酯(GMA)为单体、乙二醇二甲基丙烯酸酯(EDMA)为交联剂的整体柱修饰为弱、强阴离子交换整体柱。考察了该整体柱的性能,选择出分离蛋白质(牛血清白蛋白、溶菌酶和谷胱甘肽)的最佳实验条件,并在最佳分离条件下考察了这些蛋白质在整体柱上的色谱行为和该整体柱对纤维素降解酶的分离纯化情况。实验结果表明,该整体柱性能良好,可以实现对纤维素降解酶的快速分离与纯化。同时,实验也证明采用梯度洗脱可以实现对某些蛋白质的分离纯化。  相似文献   

17.
To separate proteins with a wide distribution of pIs under the conditions compatible to online tryptic digestion (with preferable pH=8.0), weak anion and cation exchange chromatography (WAX/WCX) mixed‐bed microcolumn has been developed. With a mixture of five proteins with pIs ranging from 4.2 to 11.4, the effect of WAX/WCX ratio on the separation performance was investigated, and an optimum packing ratio of 1:1 w/w was obtained. Moreover, the undesirable hydrophobic interaction between the proteins and the stationary phase was suppressed with 10% ACN v/v added in the mobile phases. Under the optimized conditions compatible to tryptic digestion, basic and acidic proteins were resolved simultaneously, with RSDs of relative retention time on six columns less than 6%, indicating the good resolution and packing reproducibility. Furthermore, one RPLC fraction of proteins extracted from rat middle brain and the whole protein mixture extracted from rat liver were analyzed, respectively. The results demonstrated better separation performance on WAX/WCX microcolumns than that on both weak anion exchange chromatography and weak cation exchange chromatography at pH ~8. We anticipate that WAX/WCX microcolumns are promising for the integration of protein separation and tryptic digestion aiming at high‐throughput proteome study.  相似文献   

18.
Hao J  Wang F  Dai X  Gong B  Wei Y 《Talanta》2011,85(1):482-487
A novel stationary phase for weak cation exchange (WCX) and hydrophilic interaction chromatography (HILIC) was prepared with surface-initiated atom transfer radical polymerization (SI-ATRP). Vinyltetrazole was grafted onto the surface of the beads in water medium with the polyglycidylmethacrylate beads (PGMA/EDMA) previously modified with 2-bromoisobutryl bromide as the macromolecule initiators and CuCl as catalyst. The poly(vinyltetrazole)-grafted beads obtained with different atom transfer radical polymerization (ATRP) formulations were tried as chromatographic packings in ion-exchange chromatography. The results showed that the prepared columns could separate the tested proteins with high efficiency and high capacity, and the retention time of protein had a positive relationship with increasing the chain lengths of the grafted poly(vinyltetrazole) (PVT). The prepared column was also found to be able to separate nucleosides by hydrophilic interaction chromatographic mode.  相似文献   

19.
高效阳离子交换法分离纯化蛋清中的溶菌酶   总被引:3,自引:0,他引:3  
李蓉  陈国亮 《色谱》2002,20(3):259-261
 建立了用高效阳离子交换分离纯化蛋清中溶菌酶的新方法 ,讨论了纯化的工艺条件。蛋清样品匀浆后 ,用氯化钠初步纯化 ,然后用弱阳离子交换柱XIDACE WCX分离。结果表明 ,被纯化的溶菌酶和杂蛋白得到很好分离。经活性检测 ,溶菌酶过柱后的活性回收率为 10 7% ,蛋白的比活为 15 4 6 7U/mg ,纯化倍数提高了 5 6倍。用尺寸排阻 (SEC)鉴定 ,得到的溶菌酶呈均一性。该法较传统软基质低压离子交换分离速度快 ,纯化效率高。  相似文献   

20.
Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent,sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号