首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
采用水热法合成了小粒径、具有介孔结构的SAPO-11分子筛.采用浸渍法制备了不同Ni负载量的Ni/SAPO-11催化剂.并采用X射线衍射,扫描电镜,N2物理吸附-脱附,NH3程序升温脱附,热重和H2化学吸附技术对该类催化剂的物理化学性质进行了详细表征.结果表明,SAPO-11较大表面积和介孔结构可分散Ni,使得Ni粒子尺寸较小.在棕榈油加氢脱氧制备液体烃类燃料反应中,液体烷烃产物由相关脂肪酸中间产物的直接加氢脱氧和脱羰-加氢脱氧两种途径产生.Ni/SAPO-11催化剂的弱/中强酸性质及其匹配的金属-酸双功能可显著抑制积炭反应,提高催化剂的寿命,液体烷烃收率高达70%,异构烷烃选择性超过80%.  相似文献   

2.
采用水热法合成了小粒径、具有介孔结构的SAPO-11分子筛.采用浸渍法制备了不同Ni负载量的Ni/SAPO-11催化剂.并采用X射线衍射,扫描电镜,N_2物理吸附-脱附,NH_3程序升温脱附,热重和H_2化学吸附技术对该类催化剂的物理化学性质进行了详细表征.结果表明,SAPO-11较大表面积和介孔结构可分散Ni,使得Ni粒子尺寸较小.在棕榈油加氢脱氧制备液体烃类燃料反应中,液体烷烃产物由相关脂肪酸中间产物的直接加氢脱氧和脱羰-加氢脱氧两种途径产生.Ni/SAPO-11催化剂的弱/中强酸性质及其匹配的金属-酸双功能可显著抑制积炭反应,提高催化剂的寿命,液体烷烃收率高达70%,异构烷烃选择性超过80%.  相似文献   

3.
2-甲基四氢呋喃(2-MTHF)是极具市场潜力的生物燃料、绿色溶剂和化学中间体.采用浸渍法制备Ni/γ-Al2O3催化剂,在固定床反应器评价其2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)反应性能.通过XRD、N2等温吸附-脱附、H2-TPR、NH3-TPD、TEM、H2吸附和XPS对催化剂结构和表面性质进行表征,研究Ni负载量、焙烧温度和反应条件对催化剂性能的影响规律.结果表明:Ni/γ-Al2O3催化剂的Ni金属面积、晶粒尺寸、反应温度和压力都会影响2-MF的转化率;孔结构、酸量和反应温度是影响2-MTHF选择性的主要原因,平均孔径大、酸量大和适宜的反应温度有利于提高2-MTHF选择性. 400℃焙烧的负载量为15%的Ni/γ-Al2O3催化剂, Ni金属面积大、晶粒尺寸小、总酸量多,催化剂表面的金属活性中心与酸性中心协同作用促进了2-MF呋喃环上C=C加氢生成2-MTHF,性能较优.在2 MPa、100℃、WHSV=2.7 h-1、H2/2-MF=6.4的条件下,该催化剂上2-MF转化率为99.8%, 2-MTHF选择性为98.0%,催化剂可以稳定运行40 h.  相似文献   

4.
采用浸渍法制备了Ni/HZSM-5双功能催化剂,采用BET、XRD、NH3-TPD、H2-TPR、FTIR和TG等方法表征了催化剂比表面、孔结构、酸性、还原能力及骨架结构等信息,研究了其催化木糖醇水相加氢合成液体烷烃的性能及催化剂失活的原因。结果表明,在优化的金属中心/酸中心的协同作用下,木糖醇可通过水相加氢高选择性地合成C5-C6烷烃;过高的金属中心或酸中心均会导致C-C键断裂形成轻质烷烃,以2%Ni/HZSM-5催化剂上木糖醇水相加氢活性最高,木糖醇C转化率为94%液体烷烃总收率可达90%,这与其具有较大的比表面积、合适的孔径分布、较多的金属活性中心、适中的酸量和强酸量有关。催化剂6次重复使用后活性明显降低,其骨架部分脱铝和表面积碳是其失活的主要原因。  相似文献   

5.
 采用浸渍法制备了Ni含量为2.5%~20%的系列Ni/SBA-15催化剂,在常压连续流动固定床反应器上考察了催化剂对二氧化碳重整甲烷制合成气的催化性能,并用X射线衍射和N2吸附法研究了Ni/SBA-15催化剂的结构特征. 结果表明, Ni/SBA-15催化剂具有很高的CH4和CO2转化率, 12.5%Ni/SBA-15催化剂在800 ℃反应600 h后活性没有明显下降,但反应710 h后CH4的转化率下降了约50%, CO2的转化率下降了约25%. 其活性下降的主要原因是催化剂积炭. 在高温条件下反应时, SBA-15的介孔结构也没有遭到破坏,分子筛的孔壁能有效阻止活性组分Ni的团聚. SBA-15孔中组装一定量的Ni活性组分后,除了SBA-15的介孔外,还会形成另外一种较小的孔,但这不影响SBA-15的有序介孔结构,只是其孔径、孔容和BET比表面积降低.  相似文献   

6.
将不同孔尺寸、酸强度的HZSM 5和Hβ分子筛混合制得复合载体,担载金属组分Ni、Mg、Mo、Zn制得烷烃异构化和芳构化催化剂M/C。采用XRD、BET、程序升温氨脱附(NH3 TPD)及吡啶吸附 脱附红外光谱法对制备的载体及催化剂进行了理化性质表征。以正辛烷为正构烷烃模型化合物,在连续加氢微型反应装置上评价了催化剂对正构烷烃异构化和芳构化反应的催化性能。结果表明,与单一分子筛相比,复合后载体的表面酸中心分布得到了调节,中强酸中心的增加有利于烷烃异构化和芳构化反应。复合分子筛催化剂引入不同金属组分进行改性后体现出不同的催化性能,其中Ni的引入既提供了加脱氢活性中心,又获得了适宜的B、L酸中心分布,使反应转化率和选择性显著提高。反应条件对催化剂的异构化和芳构化性能也有不同程度的影响,在320℃、2.8MPa、2.0h-1下,正辛烷的临氢异构化和芳构化选择性较好。  相似文献   

7.
 采用孔饱和共浸法制备了一系列具有相同W含量和不同Ni含量的NiW/Al2O3催化剂,并对相应的硫化态催化剂进行了XPS和HREM表征. 结果表明,引入的助剂Ni优先修饰WS2晶粒的边角位置,形成高活性的NiWS相. 催化剂中助剂Ni在噻吩加氢脱硫反应中的显著促进效应(活性提高了约30倍)与形成的NiWS活性相数量有关. 同时,助剂Ni的引入使得催化剂表面WS2晶粒的堆叠程度略有增加,晶片长度略有减小;而且引入助剂后WOx相的硫化度提高了近20%. 但相比之下,活性相织构的变化和硫化度的增大对催化脱硫活性的贡献较小,不是Ni产生助剂效应的主要原因.  相似文献   

8.
以碱处理的MOR浆液为部分硅铝源、十六烷基三甲基溴化铵(CTAB)为模板剂,采用水热法合成了微孔-介孔复合分子筛MCM-41/MOR,并通过XRD、HRTEM、BET、Py-FTIR以及水热处理等方法对合成的复合分子筛进行了表征。结果表明,合成的复合分子筛具有微孔和介孔双重孔结构,比表面积高达567 m2/g,孔容为0.60 mL/g,平均孔径为3.26 nm,且具有较高的水热稳定性。正己烷在微反装置上的非临氢异构化反应结果表明,适宜的B酸和L酸协同构成了烷烃异构化的活性中心,催化剂表面的Ni离子在活化烷烃的同时还具有较好的酸性调变作用;与Ni-MOR、Ni-MCM-41以及HMCM-41/MOR相比,复合分子筛Ni-MCM-41/MOR由于其适宜的表面酸性和孔道结构,具有更好的异构化催化性能,正已烷转化率为34.40%,i-C60选择性提高到40.38%。  相似文献   

9.
以介孔分子筛SBA-15为载体,Ni组分采用柠檬酸(CA)配合法,制备了Ni2P质量含量为25%~45%、P/Ni为0.8、CA/Ni为0~1.5的一系列CA-Ni2P/SBA-15催化剂.利用XRD和N2吸脱附表征了催化剂结构,以二苯并噻吩(DBT)为模型硫合物,对催化剂加氢脱硫(HDS)性能进行了评价,考察了CA/Ni比对催化剂结构和反应性能的影响.结果表明,催化剂仍然保持有介孔结构,催化活性物相为Ni2P.反应温度为300~340℃时,Ni2P含量和CA/Ni比都对催化剂的性能有一定的影响,反应温度在360℃以上时,Ni2P含量和CA/Ni比对催化剂性能的影响不明显.Ni2P含量为35%、CA/Ni比为1.0的催化剂具有最好的HDS活性,DBT的转化率可达98%.  相似文献   

10.
采用浸渍法制备了不同NiO含量的Ni/Al2O3催化剂,并进行了2-甲基呋喃加氢制2-甲基四氢呋喃性能的考察。结果表明,在制备的NiO负载量为10%、20%、25%、30%和40%的Ni/Al2O3催化剂中,随着NiO负载量增加,加氢反应的选择性与2-甲基呋喃的转化率均呈现出先增加后减小的趋势。其原因是由于适当增加NiO负载量有利于催化剂表面活性中心的形成,有利于加氢反应的进行;但是过度负载的NiO容易堵塞Al2O3载体中的介孔通道,降低反应的转化率与选择性。在釜式反应器中进行反应,对加氢反应条件进行了优化,发现在反应压力为3 MPa、反应温度150℃、机械搅拌速率为1000 r/min时,Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃具有较高的选择性。当NiO负载量为25%时,2-甲基四氢呋喃的选择性最高为97.1%,2-甲基呋喃的转化率达到99.4%。  相似文献   

11.
采用浸渍-沉淀法、水热合成法、共沉淀法和柠檬酸络合法制备了Ni/CeO2-Al2O3催化剂,考察了制备方法对该催化剂的物理结构和甲烷部分氧化(POM)催化性能的影响。利用N2物理吸附、X射线粉末衍射(XRD)、H2-程序升温还原(H2-TPR)、NH3-程序升温脱附(NH3-TPD)、热重(TG)分析等手段对反应前后催化剂的物理化学性质进行了表征。实验结果表明,浸渍-沉淀法制备催化剂的活性和产物H2和CO的选择性最低。而柠檬酸络合法制备的Ni/CeO2-Al2O3表现出最大的CH4转化率和最高的CO、H2选择性。BET和XRD表征结果表明,柠檬酸络合法制备的Ni/CeO2-Al2O3的比表面积最大,且CeO2晶粒粒径小、分散均匀;H2-TPR测试表明,该催化剂负载的Ni物种和Ni与Al2O3相互作用产生的尖晶石NiAl2O4都较容易被还原成金属Ni,产生更多的活性中心;NH3-TPD和TG分析表明,该催化剂具有较多酸性位点和表面积炭,但相比较于它的高反应活性,积炭速率较低、稳定性较高。  相似文献   

12.
采用等体积浸渍法、浸渍沉淀法和机械化学法(市售载体和自制载体)制备了Cat-1、Cat-2、Cat-3和Cat-4四种催化剂,通过BET、H_2-TPR、XRD、XPS和NH_3-TPD等表征催化剂的结构特征,考察了各催化剂对煤焦油模型化合物甲苯和芘(3%,质量分数)裂解反应性能的影响。结果表明,四种催化剂均为介孔材料,且Cat-4的介孔有序度更高,比表面积最大,达235 m~2/g。Cat-4催化剂中,NiAl_2O_4尖晶石的还原峰面积最高,占总面积的85.2%,还原后Ni的分散度最大,粒径最小,约为10.0 nm,意味着活性位点多。实验表明,除Cat-1外,其他催化剂对芘的裂解活性基本相当,其中,Cat-4作用下的析碳量最低,为10.84%,经Cat-1、Cat-2和Cat-3裂解后,体系中的析碳量分别较Cat-4增加了35.0%、74.7%和45.7%。可见,机械化学法制备的催化剂不仅具有最高的比表面积利于活性组分分散,而且NiAl_2O_4尖晶石含量最高,可抑制裂解过程中积炭的生成,因而最适宜于甲苯+芘裂解体系。  相似文献   

13.
通过焙烧钼酸铵和六次甲基四胺(HMT)生成的络合物,制备β-Mo_2C。在此基础上加入Ni助剂制备了Ni_3Mo_3N/β-Mo_2C双金属碳化物催化剂。采用XRD、SEM、HRTEM、低温氮吸附、元素分析等方法对催化剂进行了表征,考察了其合成气甲烷化反应性能。结果表明,β-Mo_2C有较高的CO转化率,但CO转化率和CH_4选择性分别从第10h的75.93%和36.79%降低到了第100h的67.41%和33.54%。因此,β-Mo_2C活性不够稳定且CH_4选择性较低。而Ni助剂的加入显著提高了催化剂的甲烷化活性及稳定性,使CO转化率和CH_4选择性分别从第10h的83.15%和46.64%升高到了第100h的92.51%和57.23%。这是因为Ni助剂的加入有助于生成Ni_3Mo_3N,新生成的Ni_3Mo_3N有利于甲烷化反应。  相似文献   

14.
采用孔道内水解法制备了WO_3-TiO_2/SBA-15催化剂用于光催化氧化柴油脱硫,利用XRD、SEM、EDS、N2吸附-脱附、FT-IR、TG-DTA和UV-vis等技术对该催化剂进行了表征,考察了WO_3和TiO_2负载量、焙烧温度和焙烧时间对其光催化氧化脱硫性能的影响。结果表明,WO3和Ti O2负载量分别为1.6%和15%,焙烧温度500℃,焙烧时间为3 h条件所制备的催化剂性能最佳;在该条件下制备的WO_3-TiO_2/SBA-15催化剂仍保持SBA-15的六方介孔结构,模拟柴油的脱硫率高达87.9%,且具有良好的回收再生性能。  相似文献   

15.
以Pluronic P123作结构导向剂,采用Al (NO33-NaAlO2双水解法合成氧化铝,在成胶过程中加入正硅酸乙酯,制备硅质量分数分别为5%、10%、15%的SiO2-Al2O3载体,并通过共浸渍法制备出Co-Mo/SiO2-Al2O3润滑油加氢处理催化剂。通过XRD、N2吸附-脱附、Py-FTIR、NH3-TPD、H2-TPR、TEM和XRF等手段对载体及催化剂的性质进行表征。结果表明,硅质量分数为10%的SiO2-Al2O3具有优良的孔结构、较多的中强酸以及部分有序的介孔结构。以此为载体制备的Co-Mo/10% SiO2-Al2O3催化剂中,MoS2颗粒均匀地分散在载体上,具有更多的B酸性位和Ⅱ型CoMoS活性相。以减二线蜡油为原料油的固定床活性评价结果表明,生成油中主要组分为链烷烃与环烷烃;尤其Co-Mo/10% SiO2-Al2O3催化剂具有优良的加氢性能,在15 MPa、380℃、氢油比为1000、空速为0.6 h-1的反应条件下,其HDS和HDN数值均超过99%,产品中S含量小于10 μg/g,N含量小于2 μg/g,可以满足后续异构脱蜡等对原料的要求。  相似文献   

16.
采用高温浸渍法,通过Ce~(3+)、Ti~(4+)和浓硫酸磺化反应对多壁纳米碳管进行了改性处理,制备了Lewis酸型固体酸催化剂Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs,并采用透射电镜、拉曼光谱、X射线光电子能谱、吡啶吸附红外光谱、X射线荧光光谱、X射线衍射光谱和NH_3程序升温脱附等多种测试技术对催化剂的物理化学特性和结构特征进行了表征。以Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs为油酸与甲醇经酯化反应合成生物柴油的催化剂,对其催化性能进行了研究。结果表明,当醇油物质的量比为12∶1,催化剂与反应物质量比为1%,反应温度为65℃,反应5 h,油酸转化率为93.4%。催化剂Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs在重复使用八次后,油酸的转化率仍为80.8%,由此表明其具有较高的催化活性和稳定性。高催化活性和稳定性是因为,纳米碳管的C 1s结合能较一般炭材料低,使得电子在其管状结构中的流动和逃逸非常容易,从而有助于负载于纳米碳管之上的活性组分之间发生强烈的相互作用,最终促使Ce~(3+)和Ti~(4+)分别与SO_4~(2-)形成稳定的配位键,增大催化剂的晶化程度,并使SO_4~(2-)与纳米碳管结合的更加牢固,增强了催化剂的稳定性,减少了催化剂中活性组分的流失。最后,由于SO_4~(2-)与Ce~(3+)的强相互作用,在不增加纳米碳管表面缺陷的情况下,改变了Ti~(4+)-SO_4~(2-)中表面原子的化学状态,使得S~(6+)离子和Ti~(4+)离子的吸电子能力增加,使催化剂以Lewis酸性活性位为主,避免了SO_4~(2-)/MWCNTs因为以Brnsted酸位为主,而在富含水的反应介质中,由于水合反应而降低其催化活性的现象发生。  相似文献   

17.
The effect of electron beam irradiation on the CO2 reforming of methane over Ni/Al2O3 was investigated. The conversion rate of CO2 and CH4 forming H2 and CO using various catalysts irradiated with an absorbed dose greater than 2 MGy was 5–10% higher than when using an untreated catalyst. The Ni/O ratio on the catalyst surface increased after treatment with an electron beam, and was more prominent for catalysts with a higher Ni content. As such, based on XRD and XPS measurements, electron beam treatment was found to result in either the desorption of oxygen from NiO or the removal of OH groups from the outermost surface layer of the catalyst. In addition, the concentration of active sites, such as Ni2+ and NiO, or surface defects was also found to increase with the absorbed radiation dose, thereby increasing the conversion rate.  相似文献   

18.
通过在ZrO_2中掺杂TiO_2,并在350-500℃下焙烧,制备了系列TiO_2-ZrO_2复合氧化物催化剂,将其应用于十八醇脱水制十八烯反应。随焙烧温度的升高,催化剂表面的Lewis酸性位量逐渐增加,450℃焙烧的催化剂Lewis酸性位量最多,焙烧温度继续升高则Lewis酸性位量降低;催化剂中未发现Br?nsted酸性位。焙烧温度≤400℃的TiO_2-ZrO_2复合氧化物形成Ti-O-Zr键,呈无定形态;焙烧温度400℃的TiO_2-ZrO_2复合氧化物呈单斜相和四方相ZrO_2晶型。晶相结构和酸性位量综合影响催化剂的十八醇脱水性能,具有单斜相和四方相ZrO_2晶型的催化剂上酸性位活性很低,具有无定形相的催化剂上酸性位活性显著增加,400℃焙烧的催化剂1-十八烯收率最高。  相似文献   

19.
制备了一系列添加不同含量F助剂的NiWF(x)/γ-Al2O3催化剂,并采用X射线衍射(XRD)、N2吸附、X射线光电子能谱(XPS)、NH3-TPD和高分辨透射电子显微镜(HRTEM)等手段对其结构和物化性质进行了表征,同时在固定床反应器上考察了其加氢脱氮(HDN)和加氢脱硫(HDS)活性,反应原料为中国内蒙中低温煤焦油。结果显示,随着F含量的增加,催化剂孔容和孔径没有明显变化,但比表面积减小。催化剂在643 K下硫化6 h后,其硫化度随着F含量的增加而减少,强酸位数和总酸位数呈现先略微增加后减少的趋势。高分辨透射电子显微镜测试表明,硫化后的催化剂中含有具有典型层状结构的WS2。F含量对NiWF(x)/γ-Al2O3的煤焦油HDN性能有较大影响,但对其HDS活性影响很弱。  相似文献   

20.
通过改变制备方法合成了不同形貌的CeO_2载体(包括球状CeO_2-S、花苞状CeO_2-F和多面体状CeO_2-P),并用氨水配位浸渍法制备了Ni/CeO_2催化剂。研究了CeO_2载体结构与Ni/CeO_2催化剂上CO甲烷化反应性能的关系。结果表明,CeO_2-S、CeO_2-F和CeO_2-P载体暴露的晶面和氧空位不同,对Ni/CeO_2催化剂催化活性影响也不相同。CeO_2-S氧空位最多,Ni/CeO_2-S在350℃下CO转化率和CH4选择性分别达到99.19%和88.88%。10 h热稳定性测试结果表明,Ni/CeO_2-S催化剂上的积炭量最少(2.5%),CH4选择性一直保持在80%左右,分别是Ni/CeO_2-F的1.3倍和Ni/CeO_2-P的17.6倍。这主要归因于CeO_2-S载体比表面积较大,主要暴露[111]晶面,且表面氧空位含量较多,使Ni/CeO_2-S催化剂的载体与活性中心的相互作用增强,从而呈现出优异的抗积炭性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号