首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
利用座滴法和电泳法研究了阳离子Gemini表面活性剂C12-m-C12·2Br-(m=4、6、8、10)在煤沥青表面的润湿性质及吸附机理。结果表明, 表面张力均随表面活性剂浓度的增大而减小, 超过临界胶束浓度(CMC)后趋于平稳, 接触角θ和铺展系数S的变化趋势与表面张力类似; 在所研究浓度范围内,C12-10-C12型表面活性剂的γlg~cosθ曲线符合Zisman理论, 且侵湿功(Wi)与表面张力也呈线性关系; 煤沥青表面的Zeta电位随表面活性剂浓度的增加从负电变为正电,最后趋于平稳, 且零电位对应的浓度比CMC至少低一个数量级; C12-8-C12型Gemini表面活性剂能显著改变煤沥青表面的润湿性. 由Gemini表面活性剂在煤沥青表面润湿结果及Zeta电位可以看出, C12-m-C12型Gemini表面活性剂在煤沥青表面的润湿是静电作用和范德华吸附共同作用的结果; 润湿过程可分为三个阶段。  相似文献   

2.
Gemini 阴离子表面活性剂水溶液的聚集性质   总被引:2,自引:0,他引:2  
朱森  程发  郑宝江  于九皋 《物理化学学报》2004,20(10):1245-1248
合成了一种Gemini阴离子表面活性剂,测定了其临界胶束浓度cmc和cmc时的表面张力γcmc,与传统的单基表面活性剂相比,其临界胶束浓度降低了一个数量级,具有突出的降低水的表面张力的效率;研究了该种Gemini表面活性剂的浓度对于胶束聚集数的影响,结果表明,随着浓度的增加,胶束聚集数出现了一个极大值,同时观察到液晶微相的生成.  相似文献   

3.
Gemini表面活性剂是一类高效的新型表面活性剂,而醇是工业界和日化领域最常采用的表面活性剂助剂,因此研究不同结构的醇对Gemini表面活性剂表面活性和胶束化行为的影响规律和机理对于促进Gemini表面活性剂的发展和实际应用具有重要意义.利用表面张力、电导、等温滴定微量热,低温透射电镜和核磁共振研究了直链醇1-戊醇和具有相同主链的支链醇2-己醇与3-庚醇对具有不同长度连接基团阳离子季铵盐型Gemini表面活性剂C12CSC12Br2S=2,4,6,8,10,12)的表面活性和胶束化行为的影响,结果发现,支链醇能够显著影响表面活性剂在气/液界面的排布,使得C20 (使溶剂的表面张力降低20 mN/m所需的表面活性剂浓度)和γCMC (CMC时表面张力值)随醇支化度的增加而显著降低,而支链醇对表面活性剂在溶液中的临界胶束浓度以及胶束的尺寸和形貌均没有明显影响,同时这些醇对Gemini表面活性剂的影响与连接基团的长度相关.阐述了上述结果产生的机理,将有助于指导如何选择合适结构的醇助剂去调控Gemini表面活性剂的表面和溶液性质.  相似文献   

4.
通过对Gemini表面活性剂12-s-12 (Et)(s=4, 6, 8, 10, 12)体系在乙醇/水混合溶剂中的表面张力曲线的测定, 对该体系的表面性质进行了研究. 发现随乙醇/水比例变化, Gemini各种表面化学性质, 如临界胶束浓度(cmc)、表面张力(γcmc)、饱和吸附量(Γmax)和最小分子占有面积(Amin)等的变化规律. 拓展了Gemini表面活性剂在混合溶剂中表面吸附的研究.  相似文献   

5.
利用座滴法研究了支链化阳离子表面活性剂十六烷基羟丙基氯化铵(C16GPC)和两性离子表面活性剂十六烷基羧酸甜菜碱(C16GPB)在聚四氟乙烯(PTFE)表面上的吸附机制和润湿性质, 考察了表面活性剂浓度对表面张力、接触角、粘附张力、固液界面张力和粘附功的影响趋势. 研究发现, 低浓度条件下, 表面活性剂疏水支链的多个亚甲基基团与PTFE表面发生相互作用, 分子以平躺的方式吸附到固体界面; 支链化表面活性剂形成胶束的阻碍较大, 浓度大于临界胶束浓度(cmc)时, C16GPC和C16GPB分子在固液界面上继续吸附, 与PTFE作用的亚甲基基团减少, 分子逐渐直立, 固液界面自由能(γsl)明显降低. 对于支链化的阳离子和甜菜碱分子, 接触角均在浓度高于cmc后大幅度降低.  相似文献   

6.
利用分子动力学模拟方法研究了系列离子液体型Gemini咪唑表面活性剂在水溶液中的表面活性和胶束化能力. 模拟结果表明,压力张量法得到的表面张力模拟值偏小,需乘以修正系数矫正;分子动力学模拟得到的临界胶束浓度变化规律与实验相符,可以定性比较不同结构的离子液体型Gemini咪唑分子间的胶束化能力;温度的升高会加剧分子的热运动,不利于离子液体型Gemini咪唑表面活性剂在水溶液中形成胶束;此外,研究还发现联接基不同的离子液体型Gemini咪唑表面活性剂可能遵循不同的胶束化机理.S≤6时,单个分子自组装成胶球后发生聚合形成大胶团.随着咪唑上长烷烃链碳数的增加,[Cn-4-Cnim]胶束化能力提高;而随着联接链长度增加,[C10-S-C10im]胶束化能力降低;当S >6时,分子联接基弯曲并伸入其它分子烷烃链内部以减小头基分离力,从而形成稳定的胶束或胶团.随着联接基团亚甲基数的增加,头基斥力减小,附加疏水相互作用增强,[C10-S-C10im]胶束化能力提高.  相似文献   

7.
以表面张力法测定了系列Gemini表面活性剂m-6-m以及对应单体表面活性剂CmTABr的临界胶束浓度(cmc)和降低水表面张力20mN·m-1需要的浓度(pC20).比较这些参数表明m-6-m胶束化和在界面吸附的能力均强于CmTABr,这被归结为Gemini表面活性剂烷烃尾链间的疏水协同效应.与不对称Gemini表面活性剂12-6-m比较,对称的Gemini结构更有利于表面活性剂的聚集和吸附.  相似文献   

8.
董姝丽  李新  徐桂英 《化学学报》2006,64(20):2051-2056
利用动态光散射(Dynamic Light Scattering, DLS)、瞬态电双折射(Transient Electric Birefringence, TEB)和粘度测定方法研究了部分氟代阳离子表面活性剂氟代-2-羟基十一烷基二乙羟基甲基氯化铵(diethanolheptadecafluoro-2-undecanol methylammonium chloride, C8F17CH2CH(OH)CH2NCH3(C2H4OH)2Cl, DEFUMACl)水溶液的胶束化特性. 结果表明: DEFUMACl的临界胶束浓度cmc为3.8 mmol•L-1. 稀溶液中随着DEFUMACl浓度的增加或者无机盐NaCl的加入, DEFUMACl胶束由球形向棒状转变, 其转变浓度, 即第二临界胶束浓度(cmcII)为0.2 mol•L-1; 电导测定的反离子(Cl)结合度为0.72. 利用球形和棒状胶束模型确定的DEFUMACl胶束聚集数分别为45和335.  相似文献   

9.
摘要绿色表面活性剂烷基糖苷C12G 1.46具有混合糖苷组成, 将其分别与十二烷基三氧乙烯磺酸钠C12E3S、 十二烷基三甲基氯化铵C12TAC、 三硅氧烷非离子表面活性剂BE-6、 聚醚类表面活性剂 TMN-6复配, 在25 ℃下测定它们在0.1 mol/L NaCl溶液中的表面活性, 通过其混合表面层和混合胶束的分子交换能(ε, εm)的计算得出如下结论: (1) C12G1.46的活性高于C12G1和C12G2, 即烷基混合糖苷的活性高于相同烷基的纯糖苷的结论得到了进一步证实. 利用MM2分子力场计算的能量数据可合理地解释这种混合产品活性提高的原因. (2) 在该烷基混合糖苷的二元体系溶液中, 对其表面吸附和胶束化两个过程的顺序问题进行探讨, 一种情况是先建立表面吸附, 再形成胶束(C12G1.46/BE-6 和 C12G1.46/TMN-6 体系); 另一种情况是表面吸附和胶束化同时进行(C12G1.46/C12TAC和C12G1.46/C12E3S体系).  相似文献   

10.
N-酰基-L-丝氨酸钠表面活性剂的合成和胶束化热力学性质   总被引:1,自引:0,他引:1  
梁亚琴  胡志勇  曹端林 《应用化学》2013,30(9):1042-1047
以L-丝氨酸和长链酰氯为原料,合成了3种不同碳链长度(n=8,12,14)的N-酰基-L-丝氨酸。 并以1H NMR、ESI-MS和元素分析对3种目标产物进行了表征。 采用表面张力法研究了N-酰基-L-丝氨酸钠在298、308、318和328 K时水溶液中的聚集行为,确定了临界胶束浓度(cmc)、临界胶束浓度下的最低表面张力(γcmc)、表面饱和吸附量Γmax。 由cmc和温度的关系,应用相分离模型计算了胶束化热力学参数ΔGom、ΔHom和ΔSom。 结果表明,ΔGom<0,ΔHom的绝对值比-TΔSom绝对值小的多,说明胶束化过程为熵驱动过程,随着温度的升高,胶束化过程是熵-焓补偿的过程。  相似文献   

11.
十六烷基二苯醚二磺酸钠表面化学性质及胶团化作用   总被引:3,自引:0,他引:3  
用滴体积法通过表面张力的测定, 系统地研究了十六烷基二苯醚二磺酸钠(C16-MADS)在不同温度(298.0~318.0 K)和不同NaCl浓度(0~0.50 mol•L-1)下的表面活性. 结果表明, 温度升高使C16-MADS溶液的临界胶束浓度(cmc)略有增大, 表面极限吸附量(Γ)降低. cmc随NaCl浓度的增大从1.45×10-4 mol•L-1降至4.10×10-5 mol•L-1, 但最低表面张力(γcmc)基本不受影响. 在298.0 K与303.0 K时, NaCl浓度的增大, Γ增大; 在308.0、313.0与318.0 K时, NaCl浓度的增大, 出现了Γ从2.27 μmol•m-2降低至1.41 μmol•m-2的“反常”现象. 胶团形成自由能(ΔGm0)随温度和NaCl浓度增加负值增大(-63.98~-76.20 kJ•mol-1), 胶团的形成主要是熵驱动过程.  相似文献   

12.
The macrocyclic compound, [1,2-C2B10H10-1,4-C6H4-1,7-C2B10H10-1,4-C6H4]2 (5)—a novel cyclooctaphane, was prepared by condensation of the C,C′-dicopper(I) derivative of meta-carborane with 1,2-bis(4-iodophenyl)-ortho-carborane. The X-ray crystal structure of 5·C6H6·6C6H12 was determined at 150 K, revealing an extremely loose packing mode. Molecule 5 has a crystallographic Cs and local C2v symmetry; the macrocycle adopts a butterfly (dihedral angle 143°) conformation with the ortho-carborane units at the wingtips and the phenylene ring planes roughly perpendicular to the wing planes. Multinuclear NMR spectra suggest that molecule 5 in solution inverts rapidly via the planar D2h geometry, which (from ab initio HF/6-31G* calculations) is only 1 kcal mol−1 higher in energy than the C2v one. An attempt to prepare an even larger macrocycle, comprising three para-carborane and three ortho-carborane units linked by six para-phenylene units, was unsuccessful.  相似文献   

13.
A coincidence technique is used to study the influence of the internal energy of the reactant ion on the cross section of the ion-molecule reactions in the C2H4+ + C2H4 system. The experiment is performed at thermal collision energies. In the ion-molecule reactions of C2H4+ + C2H4 our measurements indicate a barrier between the initially formed collision complex (C2H4)2+* and a tight complex (C4H8+)*. Using an extension of our earlier developed statistical model, now including a potential barrier between the initially formed loose complex (C2H4)2+* and the tight complex (C4H8+)*, our experimental data can be reproduced. For comparison also the internal energy dependence of the unimolecular decomposition of photoionised 1-C4H8+ is measured. Assuming that the photoionised 1-C4H8+ is identical with the tight (C4H8+)* complex, the model applied to the ion-molecule reactions describes also the unimolecular decay of 1-C4H8+ correctly, using the same set of parameters.  相似文献   

14.
采用密度泛函理论(DFT)计算了MgAl-LDHs层板与无机阴离子(F-、Cl-、NO3-、CO32-、SO42-)和有机阴离子(水杨酸根离子([HO(C6H4)COO]-)、苯甲酸根离子([(C6H5)COO]-)、对二甲氨基苯甲酸根离子([p-(CH3)2N(C6H4)COO]-)、十二烷基磺酸根离子[C12H25SO3]-、己烷基磺酸根离子[C6H13SO3]-、丙烷基磺酸根离子[C3H7SO3]-)间的相互作用,获得稳定超分子几何结构及相互作用能。层板主体与客体间存在较强的超分子作用,包括主客体间静电作用和氢键等。主、客体间相互作用能数值大小顺序为CO32- > SO42- > F-> Cl-> NO3-;[p-(CH3)2N(C6H4)COO]-> [(C6H5)COO]-> [HO(C6H4)COO]-和[C12H25SO3]-> [C6H13SO3]- > [C3H7SO3]-。另外,还采用自然键轨道(NBO)计算和分析了LDHs 层板与阴离子间作用机理,从二阶微扰理论计算得到的稳定化能变化趋势与相互作用能数据基本吻合。  相似文献   

15.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

16.
The study of the reactivity of R---CH=N---(C6H4-2-SMe) with R=C6H5 or 2,4,6-Me3-C6H2 with palladium(II) salts is reported. These studies have allowed us to prepare and characterize the coordination complexes: cis-[Pd{R---CH=N---(C6H4-2-SMe)}Cl2] {R=C6H5 or 2,4,6-Me3-C6H2} and the cyclopalladated compounds [Pd{C6H4---CH=N---(C6H4-2-SMe)}Cl] and [Pd{(2-CH2-4,6-Me2-C6H2)---CH=N---(C6H4-2-SMe)}Cl]. The X-ray crystal structures of the latter complexes reveal that the thioimines act as a [Csp2, phenyl,N,S] and as a [Csp3, N,S] terdentate group, respectively. The study of the reactions of the cyclopalladated compounds with PPh3 is also reported.  相似文献   

17.
In the last thirty years, Gemini surfactants with various structures have been designed, synthesized, and demonstrated to show superior physicochemical properties. However, the utilization of non-degradable surfactants, including these Gemini surfactants, poses a threat to the environment; hence, degradable Gemini surfactants are desirable. Herein, biodegradable cationic Gemini surfactants with amide or ester groups in the hydrophobic chains or the spacer were synthesized. A monomeric surfactant containing an amide group and a Gemini surfactant with amide groups both in the hydrophobic chains and the spacer were synthesized for comparison. The effects of amide group location on the aggregation behavior of Gemini surfactants were studied systematically. The differences between the Gemini surfactants with amide groups and Gemini surfactants with ester groups were evaluated by comparing their aggregation behavior and hydrogen bonding formation. The Gemini surfactants with amide groups (C12A-Cn-AC12) in the chains showed much larger exothermic ΔHmic and more negative ΔGmic values than those of the corresponding monomeric surfactant C12A; besides, their critical micelle concentration (cmc) was more than one order of magnitude lower than that of C12A. The amide groups located in the hydrophobic alkyl chains promoted hydrogen bonding formation and self-assembly of the Gemini surfactants C12A-Cn-AC12. Moreover, 1H NMR spectra revealed that the co-effect of a short spacer and hydrogen bonding leads to slow exchange of the C12A-C2-AC12 molecules between the monomer and the aggregate. For the Gemini surfactant series C12-ACnA-C12, the amide groups notably increased the spacer length, and largest cmc value and smallest exothermic ΔHmic value were observed for C12-AC2A-C12 instead of C12-AC6A-C12. In C12-AC12A-C12, the spacer was long and sufficiently flexible to adopt a "U"-shaped conformation above the cmc, and it acted as the hydrophobic part of the surfactant, as confirmed by 1H NMR spectra. Among the Gemini surfactant with amide groups in both the spacer and the hydrophobic alkyl chains, C12A-AC6A-AC12 had a smaller cmc and I1/I3 ratio as well as more exothermic ΔHmic values than those of C12A-C6-AC12 and C12-AC6A-C12. 1H NMR spectra indicated that an ester-alcohol structural equilibrium exists during aggregation for the Gemini surfactants with ester groups. In addition, the Gemini surfactants with ester groups formed water-mediated hydrogen bonds in the aggregates. This water-mediated hydrogen bonding between ester groups was weaker than the direct hydrogen bonding between amide groups. Therefore, the Gemini surfactants with ester groups, C12E-C6-EC12 and C12-EC6E-C12, exhibited lower surface activity, a larger micelle ionization degree, higher micropolarity, and smaller exothermic ΔHmic and less negative ΔGmic values than their counterparts with amide groups, C12A-C6-AC12 and C12-AC6A-C12.  相似文献   

18.
We study here the reactions between C60 and planar C5H5+ cations that lead to the formation of [C60C5H5]+ adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5]+: σ-adduct, π-complex, [1,4]- and [l,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the σ-addition cation. Another interesting and stable structure is the π-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Å with the C5v symmetry. The C5H5+ cyclopentadienium cation seems to be an “inverted umbrella” sitting on a five-membered ring of the C60 cage.  相似文献   

19.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号