首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
为了减少因煤样粒度而产生的光谱采集误差,研究0.2,1,3和13 mm粒度等级下的煤质近红外分析模型。采用PCA方法提取特征信息,建立基于GA-BP和GA-Elman神经网络算法的定量分析模型。实验结果表明,经数据归一化与多元散射校正预处理后,0.2 mm粒度等级的光谱与煤炭标准之间的相关性最强,模型的学习精度最高;经平滑处理后1 mm粒度等级的分析结果最佳。平滑法对特征谱峰不明显的光谱的预处理效果较差,多元散射校正方法的适用性最强。在0.2 mm粒度等级下原光谱的信息准确度最高,1和3 mm其次,13 mm最差。煤样粒度越大,光谱的不稳定因素越多,从而导致分析模型的负面影响增加。  相似文献   

2.
为了实现翡翠产地的快速无损鉴别,丰富宝玉石产地鉴别方法的多样性,基于红外光谱分析得到的数据,建立支持向量机(SVM)识别模型对三个产地的翡翠进行分析。实验收集了缅甸、俄罗斯和危地马拉3种翡翠的红外光谱数据共106条,为了达到更好的模型识别效果,建模前将原始的红外光谱数据进行反射率到吸光度的转化,再对光谱进行不同的预处理。预处理的目的是降低噪声、基线漂移和散射现象等对模型识别效果的影响。本次实验预处理使用的方法有SG平滑、均值中心化、标准化、趋势校正、多元散射校正、最大最小归一化、标准正态变换以及标准正态变换后再进行趋势校正。实验结果表明,对红外光谱进行预处理后模型得到的识别准确率均高于原始光谱的73%;三个产地翡翠的红外光谱分开进行多元散射校正和最大最小归一化得到的模型识别准确率高于混合进行预处理得到的结果;一些预处理方法结合使用也会提高模型的识别准确率,如标准正态变换和趋势校正。对三个产地翡翠的红外光谱分开进行最大最小归一化处理后得到的识别准确率达到了最高的95%,说明这种采用红外光谱技术建立的支持向量机(SVM)识别模型可以实现对翡翠产地的快速识别。  相似文献   

3.
研究利用近红外(924~1 720 nm)反射光谱预测了洋葱的可溶性固体物含量。实验选取了三种不同产地和不同采收期的洋葱为样本(268)。在重复采集光谱数据之后,榨取对应光谱采集处洋葱块汁,测定可溶性固体物参考值。研究对比了Savitzky-Golay平滑、散射校正和微分处理等预处理方法,同时基于偏最小二乘回归方法建立了统计模型。结果表明,带S-G平滑的微分处理在平滑窗口为32,跨度为10时效果最佳。一阶微分比二阶微分的预处理效果要好,预测复相关系数R2为0.87,均方根误差RMSEP为2.42 °Brix。对比显示,无平滑处理光谱数据散射校正预处理得到的结果最好,预测复相关系数R2为0.88(RMSEP=2.31 °Brix)。采用交叉验证得到的PLSR模型预测复相关系数R2为0.90,RMSEP为1.84 °Brix,其相对分析误差RPD为3。说明加散射校正处理的近红外反射光谱可用于洋葱的可溶性固体物检测。  相似文献   

4.
选取赣南脐橙果园土壤作为研究对象,探讨在4 000~7 500 cm-1范围内的光谱分析土壤全氮和有机质的可行性。采集的近红外光谱采用多元散射校正、一阶微分、二阶微分、七点平滑等多种预处理对比分析,分别建立了有机质和全氮含量偏最小二乘模型。实验得出全氮预测模型在4 000~7 500 cm-1范围内采用七点平滑(SG)进行预处理模型较为理想,校正集相关系数(rc)为0.802,校正均方根误差(RMSEC)为2.754,预测集相关系数(rp)为0.715,预测均方根误差(RMSEP)为3.077;有机质预测模型在4 000~7 500 cm-1范围内采用标准正态变量变换(SNV)预处理模型较为理想,rc为0.848,RMSEC为0.128,rp为0.790,RMSEP为0.152。研究表明近红外漫反射光谱可快速用于赣南脐橙果园的土壤中全氮和有机质含量的快速检测。  相似文献   

5.
木材的种类识别是木材加工和贸易的一个重要环节,传统的木材种类识别方法主要有显微检测法和木材纹理识别法,其操作繁琐,耗时长,成本高,不能满足当前需求。本研究利用木材的近红外光谱(NIRS)结合模式识别方法,以期实现木材种类的快速准确识别。采用近红外光谱结合主成分分析法(PCA)、偏最小二乘判别分析法(PLSDA)和簇类独立软模式法(SIMCA)三种模式识别对58种木材进行种类鉴别研究;5点平滑、标准正态变量变换(SNV)、多元散射校正(MSC)、Savitzky-Golay一阶导数(SG 1st-Der)和小波导数(WD)五种光谱预处理方法用于木材光谱的预处理;校正集和测试集样品的正确识别率(CRR)用于模型的评价。采用PCA方法,通过样品的前三个主成分空间分布图分辨木材种类的聚类情况。在建立PLSDA模型,原始光谱的正确识别率最高,分别为88.2%和88.2%;5点平滑处理的光谱校正集和测试集的CRR分别为88.1%和88.2%;SNV处理的光谱校正集和测试集的CRR分别为84.4%和84.5%;MSC处理的光谱校正集和测试集的CRR分别为83.1%和84.2%;SG 1st-Der处理的光谱校正集和测试集的CRR分别为81.8%和82.7%;WD(小波基为“Haar”,分解尺度为80)处理的光谱校正集和测试集的CRR分别为87.3%和87.2%。可知,在PLSDA模型中,木材光谱未经预处理种类识别效果最后好。在建立SIMCA模型过程中,原始光谱的校正集和测试集的CRR分别为99.7%和99.4%;5点平滑处理的光谱校正集和测试集的CRR分别为100%和100%;SNV处理的光谱校正集和测试集的CRR分别为99.5%和99.1%;MSC处理的光谱校正集和测试集的CRR分别为99.0%和98.4%;SG 1st-Der的光谱校正集和测试集的CRR分别为81.8%和82.7%;WD处理的光谱校正集和测试集的CRR分别为100%和100%。可知,在SIMCA模型中,木材光谱经平滑和小波导数处理后的识别效果最好,且光谱的校正集和测试集CRR都为100%。采用三种模式结合五种不同的预处理方法对木材近红外光谱进行定性建模识别时,由于木材样本属性复杂,主成分分布图相互交织,PCA无法识别出58种木材;原始光谱的PLSDA模型可以得到较好的判别模型,但校正集和测试集的CRR只有88.2%和88.2%;木材光谱经过5点平滑或WD预处理后的SIMCA模型可达到最好的识别效果,校正集和测试集的CRR均为100%,且WD-SIMCA模型因子数比5点平滑SIMCA模型小,模型更为简化,故WD-SIMCA为58种木材种类识别的最优模型。研究表明光谱预处理方法可以有效的提高木材种类识别精度,有监督模式识别方法SIMCA可以用来建立有效的木材识别模型,近红外光谱结合模式识别可以为木材种类的识别提供一种快速简便的分析方法。  相似文献   

6.
近红外光谱无创血糖检测的模拟样品试验研究   总被引:4,自引:2,他引:2  
提出了采用牛奶作为模拟样品,对血糖测量中的测量方法和波长选择等基础问题进行了研究。在1560~1750nm和2090-2190nm的波段:对模拟样品的近红外漫反射光谱,分别采用多元散射校正(MSC)、一阶微分和矢量归一化进行预处理,用偏最小二乘法(PLS)建立了乳糖的校正模型。在2090~2190nm波段内,采用一阶微分配合多元散射校正,模型相关系数达到0.99,预测集样本的标准偏差(RMSEP)达到0.045。以上研究结果为血糖测量的深入研究提供了理论和实践上的指导。  相似文献   

7.
土壤重金属的污染影响着农作物的产量和质量。传统的土壤重金属检测方法步骤繁琐、检测费用高且速度慢。利用X射线荧光光谱(XRF)分析技术检测土壤中重金属含量,具有处理简单、现场、快速、无损等优点。由于土壤背景复杂,包含大量噪声和无关信息,建立XRF校正模型前,对光谱的预处理能有效的去除不相干信息,保留有用信息,对XRF预测模型的精度有重要影响。主要研究光谱预处理方法对重金属含量预测模型精度的影响。首先,采用向前间隔偏最小二乘(FiPLS)作为校正模型,对比了无预处理、去趋势处理(DT)、标准正态变量变换(SNV)、多元散射校正(MSC)、小波去噪(WT)、SNV+DT、卷积平滑(SG)+一阶导数、卷积平滑(SG)+二阶导数等7种不同预处理条件下的土壤重金属模型的检测精度。初步结果表明,多元散射校正预处理方法效果较好,与原始光谱相比,相关系数r从原始的0.988提高到0.990,预测均方根误差RMSEP、相对误差平均从原来的20.809和0.166分别降低到19.051和0.121。其次,在多元散射校正预处理方法的基础上,针对多元散射校正方法以线性表达式描述非线性关系的局限性,提出了局部加权线性回归多元散射校正(LWLRMSC)和偏最小二乘多元散射校正(PLSMSC),并比较了它们的建模效果。LWLRMSC是基于加权思想,在预测一个点的值时,选择适当的核函数和权重分配策略进行预测点的线性回归,来解决简单线性回归的欠拟合状况;PLSMSC是基于PLS建模思想,考虑了自变量和因变量的最大相关性,来减少拟合误差及失真问题。结果表明,PLSMSC具有最佳的预处理效果,五种重金属Cu,Zn,As,Pb,Cr预测值和实际值的R分别为0.989,0.973,0.991,0.989和0.986,RMSEP分别为8.805,58.360,7.671,12.549和20.851,相比于传统的MSC方法不仅在精度方面有大幅度的提升,且具有更好的泛化性能,能消除光谱噪声,提升有效信息贡献度,为土壤重金属含量预测模型选取合适的预处理方法提供了理论支撑。  相似文献   

8.
采用支持向量机(support vector machine,SVM)建立了鱼糜样品中水分和蛋白质含量的近红外光谱校正模型,并采用独立样本集进行了预测。光谱数据经间隔两点一阶导数(DB1G2)、标准正态变换(SNV)、多元散射校正(MSC)相结合的方法预处理后,用偏最小二乘(PLS)降维处理,取前15个投影变量为自变量。获得水分模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP; 蛋白质模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP,有较好的预测准确性。基于SVM算法的近红外光谱技术可用于鱼糜水分和蛋白质含量的快速检测。  相似文献   

9.
梨可溶性固形物含量的在线近红外光谱检测   总被引:11,自引:0,他引:11  
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。  相似文献   

10.
研究用可见/近红外光谱(Vis/NIR spectroscopy)漫透射方式对柑橘类水果的可溶性固形物含量(SSC)进行了无损、快速定量分析。通过自行设计的Vis/NIR光谱系统测定了110个柑橘样品的SSC。82个柑橘样品用来建模,其余28个用来验证模型的性能。对实验室测得的柑橘水果的SSC实际值与Vis/NIR光谱数据进行相关性分析,用光谱定量分析软件中集成的偏最小二乘回归法(PLS)和主成分回归法(PCR)建立校正和预测模型。对比了不同光谱预处理方法, 如微分处理, 标准归一化处理(SNV), 多元散射校正(MSC)和Savitzky-Golay 光谱平滑方法)对模型检测结果的影响。根据预测平方根误差(RMSEP)和相关系数(r2)进行不同模型的预测性能评价,建立的最好的柑橘水果SSC预测模型的RMSEP=0.538%,r2=0.896。结果表明Vis/NIR可以作为一种准确、快速的无损检测方法来评价柑橘类水果的可溶性固形物含量。  相似文献   

11.
可溶性固形物(SSC)和可滴定总酸(TA)含量是影响李果实品质的重要指标,经典的破坏性检测方法不适用于果实按品质分级,近红外光谱(NIRS)检测方法具有速度快、操作简便、可无损检测果实品质。为实现NIRS无损快速检测安哥诺李果实可溶性固形物和可滴定总酸含量,利用NIRS采集李果实的漫反射光谱,同时采用糖度计测定安哥诺李果实的SSC,采用滴定法测定了李果实TA含量,使用杠杆值和F概率值剔除异常样品,采用软件优化结合人工筛选光谱波段,使用了消除常数偏移量、减去一条直线、矢量归一化(SNV)、最大-最小归一化、多元散射校正(MSC)、一阶和二阶导数结合平滑处理、一阶导数结合减去一条直线和平滑处理、以及一阶导数结合SNV或MSC校正等光谱预处理方法,分别采用偏最小二乘法(PLS)和主成分分析结合反向传播人工神经网络(BP-ANN)建立李果实SSC、TA的定量分析模型。结果表明,李果实SSC和TA的最佳PLS建模效果波段范围分别为4 000~8 852和4 605~6 523 cm-1。SSC的PLS模型的最佳光谱预处理方法为MSC校正,最佳模型校正相关系数(Rc)为0.914 4,预测相关系数(Rp)为0.878 5,校正均方根误差(RMSEC)为0.91,预测均方根误差(RMSEP)为1.00。经一阶微分结合SNV和9点平滑的方法预处理后,TA的PLS模型效果最佳,Rc,Rp,RMSEC,RMSEP分别为0.860 3,0.819 6,0.80和0.86。提取了李果实SSC和TA光谱数据的主成分,并基于前10个主成分得分建立了李果实SSC和TA最佳BP-ANN定量分析模型,其Rc,Rp,RMSEC和RMSEP分别为0.976 7,0.889 7,0.75和0.99;TA的BP-ANN模型的相应参数值依次为0.974 3,0.897 7,0.62和0.83,与采用PLS算法建立的定量模型相比较,BP-ANN模型具有较高的Rc,Rp和较低的RMSEC,RMSEP,因此BP-ANN模型对SSC和TA指标的定量分析结果更佳。  相似文献   

12.
为提高全血血红蛋白浓度预测模型的预测精度,基于近红外光谱分析,首先对原始全血透射光谱数据分别进行均值中心化、标准化、标准正态变量变换(SNV)、多元散射校正(MSC)以及Savitzky-Golay(SG)卷积平滑结合MSC的预处理操作,最终选择预处理效果最好的SG-MSC方法作为数据预处理方法,其最大相关系数达到0.944 1。对SG平滑的平滑窗口宽度进行讨论,找出平滑效果最好的窗口宽度为27。数据预处理消除了全血吸收光谱的基线失真,提高了全血吸收光谱数据的信噪比。将190个样本(190个血红蛋白浓度对应的透射光谱数据)分为具有相近血红蛋白浓度分布的校正集和测试集,其中校正集为143个样本(对应血红蛋白浓度分布为10.6~17.3 g·dL-1),测试集为47个样本(对应血红蛋白浓度分布为10.3~17.3 g·dL-1),确保建立模型的适用性。对校正集数据预处理后利用蒙特卡洛无信息变量消除(MC-UVE)方法对其进行波长变量选择,剔除含信息量少的波长点,提高含信息量多的波长占比。设置蒙特卡洛迭代次数为1 000,最终从全血吸收光谱的700个波长变量中筛选出191个波长变量用于建立全血血红蛋白浓度偏最小二乘(PLS)回归模型。对比分析原始全血透射光谱全谱PLS模型、原始全血吸收光谱全谱PLS模型、预处理全血吸收光谱全谱PLS模型、SG-MSC-MC-UVE-PLS模型以及已有二阶导数PLS模型的模型效果,表明基于SG-MSC-MC-UVE-PLS算法的全血血红蛋白浓度预测模型效果较其他模型效果更优,预测相关系数由0.676 3提高到0.979 1,预测集均方根误差由0.898 1减小到0.220 3,最大绝对误差由2.426 1减小到0.411 2。同时,利用MC-UVE方法进行波长变量选择,在保证预测精度的前提下,筛选出建模的波长个数更少,有利于提高模型计算效率。研究结果表明,SG-MSC-MC-UVE-PLS方法能够提高全血吸收光谱信号的信噪比,简化模型结构,提高模型的预测精度和计算效率,对推动血红蛋白浓度检测技术的发展具有进步意义。  相似文献   

13.
我国高速铁路运行距离长,服役环境多变,对车轮钢的性能要求较高。车轮钢的晶粒尺寸直接影响着车轮钢的力学性能,且晶粒的特征和测量对材料科学有着重要的作用,因此为了保证高速列车的安全运行,对高铁车轮的晶粒度等级进行检测是十分必要的。利用激光诱导击穿光谱(LIBS)实验平台对5个不同晶粒度等级的ER8高速列车车轮钢样品(经过不同热处理得到不同晶粒度等级)进行击穿获取光谱信息,比较了基体元素Fe和合金元素(Cr,Mo,Co)的谱线强度与5个不同晶粒度等级的样品之间的相关性,发现均与样品晶粒度等级存在不同程度的相关性。利用此关系建立以谱线强度为变量的偏最小二乘判别分析(PLS-DA)模型,在建立模型前分别采用标准正态变量变换(SNV)、多元散射校正(MSC)和Savitzky-Golay卷积平滑方法进行预处理。通过比较各种预处理方法,得出采用SNV预处理后建立的模型效果最佳,建模集误判个数为4个,准确率为95.7%,预测集误判个数为3个,准确率为90%。在SNV预处理方法的基础上,分别选择竞争性自适应重加权算法(CARS)、连续投影算法(SPA)和CARS-SPA三种波长筛选方法进行波长筛选,比较基于不同特征波长筛选的模型效果,结果表明,使用CARS进行波段筛选后建立的模型效果最佳,建模集误判个数为2个,准确率为97.9%,预测集的误判个数为1个,准确率为96.7%,模型的准确率均高于90%,可以将不同晶粒度等级的样品进行分类。综合分析以上判别分析模型结果,发现结合SNV预处理和CARS波段筛选后的PLS-DA模型的准确率最高。研究表明,采用激光诱导击穿光谱技术结合偏最小二乘判别分析高铁车轮钢晶粒度等级具有一定可行性,可将其用于评估车轮钢表面晶粒度等级,同时也为LIBS技术应用于不同晶粒度等级的高铁车轮钢研究提供了一定的基础依据。  相似文献   

14.
牛肝菌作为一种著名的野生食用菌,具有较高的食用价值和经济价值.牛肝菌种类繁多,不易区分,建立一种有效、快速、可信的种类鉴别技术,可为牛肝菌提高品质提供一种方法.本研究采集云南不同地区7种野生牛肝菌共计683株,获取样品中红外光谱和紫外光谱,分析不同种类牛肝菌平均光谱图特征.基于多种预处理组合(SNV+SG,2D+MSC...  相似文献   

15.
光谱预处理方法选择研究   总被引:1,自引:0,他引:1  
复杂样品光谱信号往往会受到杂散光、噪声、基线漂移等因素的干扰,从而影响最终的定性定量分析结果,因此通常需要在建模前对原始光谱进行预处理。目前已有的光谱预处理方法包括很多种,如何寻找合适的预处理方法是很棘手的问题。一种途径是观察光谱信号特点选择预处理方法(visual inspection),另一种途径是根据建模性能的优劣反过来选择预处理方法(trial-and-error strategy)。前者无需建模,更具有解释性,但是有时会由于选择者主观的因素导致错误的结果;后者无需观察光谱特点,但需要考察大量的预处理方法,对大数据集比较费时。因此需要探讨哪种选择方式更科学与合理。本研究采用9组数据,通过对10种预处理方法的120种排列组合来探讨预处理的必要性及预处理方法的选择。首先,优化偏最小二乘(PLS)的因子数及一阶导数、二阶导数、SG平滑的窗口参数,连续小波变换(CWT)的小波函数和分解尺度。然后把无预处理及一阶导数、二阶导数、CWT、多元散射校正(MSC)、标准正态变量(SNV)、SG平滑、中心化、Pareto尺度化、最大最小归一化、标准化10种预处理方法按照背景校正、散射校正、平滑和尺度化的顺序进行排列组合,得到120种预处理及其组合方法。最后对不同数据及相同数据的不同组分分别进行120种预处理,分析光谱信号特点及预处理后PLS建模的预测均方根误差值(RMSEP)。结果表明,相比观察光谱信号特点,根据光谱与预测组分的建模效果可以更为准确地选择最佳预处理方法。对于多数数据,采用合适的预处理方法可以提高建模效果;对于不同的数据集,因为其数据集信息和复杂性不同,所以其最佳预处理方法也不同;对于相同数据集,即使光谱相同,但不同组分的预处理方法也不相同。因此,不存在普适性的最佳预处理方法,最佳预处理方法除了与光谱有关,还与预测组分有关。通过对已有预处理方法按照预处理目的进行分类再排列组合是选择最佳预处理方法的一种有效途径。  相似文献   

16.
作为煤质评价的重要指标之一,热值的快速、准确测量对电厂燃煤锅炉的优化燃烧和经济运行至关重要。采用激光诱导击穿光谱(LIBS)技术结合BP神经网络定量分析模型和聚类分析,以35个煤粉样品作为研究对象进行热值的定量分析。基体效应对LIBS光谱数据的显著影响,针对基于某类煤粉样品所建立的定标曲线不能直接用于不同煤种的定量分析,采用K-means聚类方法根据热值、灰分、挥发分把样品分为三类对训练集和预测集样品进行优化选择。通过谱线强度和热值变量相关性分析,同时考虑特征谱线的物理意义,最终提取12条元素谱线的峰值强度作为输入参数,建立BP神经网络模型对燃煤热值进行预测。定标结果表明,建立的神经网络模型具有良好的定量分析能力,定标曲线拟合度R2为0.996,热值预测值的相对误差低于3.42%,多次重复测量的相对标准偏差在4.23%以内。对聚类分析中3类样品具有不同的预测能力,采用峰值强度作为输入参数时,能够在一定程度上减弱试验参数波动和基体效应造成的影响。定量分析结果的重复性和准确性可以通过对不同类别的煤种分别建立BP神经网络模型来进一步改善。LIBS技术结合BP神经网络可以对煤粉热值进行定量分析,在现场在线/快速检测领域具有很好的应用价值和潜力。  相似文献   

17.
水体有机污染物浓度检测中的紫外光谱分析方法   总被引:3,自引:0,他引:3  
水体中的大多数有机污染物在紫外区域有较强的吸收,因此可利用紫外吸光度检测水体中的有机污染物浓度。在检测过程中,通过平滑、导数、标准正态变量变换等光谱预处理后,采用主元回归、偏最小二乘、支持向量机等方法建立回归模型,并由该模型依据待测样本的紫外光谱数据计算出有机污染物浓度。为了探究不同的预处理方法、建模方法在有机污染物浓度检测中的特点及内在联系,本文对一组来自污水厂进出水的光谱数据采用不同的预处理和建模方法进行实验研究,研究结果表明:当获得的原始数据较好时,可以直接进行建模,进行光谱预处理反而会使模型效果下降;由于本实验中污水的样本数小于光谱数据点数,所以最小二乘支持向量机更适合于本组实验样本。  相似文献   

18.
柑橘叶片叶绿素含量的准确检测对柑橘营养状况和生长态势具有极其重要的意义。研究了快速无损诊断柑橘叶片中叶绿素含量的方法,以期为拉曼光谱检测技术用于柑橘叶片叶绿素含量检测提供参考。采集不同冠层高度和不同地理分布的柑橘叶片120片,拭去叶片表面的灰尘,用去离子水对其清洗、晾干装入密封袋中并用标签分类标注。然后对柑橘叶片进行拉曼光谱采集,参数设置如下:分辨率为3 cm-1,积分时间为15 s;激光功率为50 mW。分别采用BaselineWavelet、迭代限制最小二乘(IRLS)和不对称最小二乘(ALS)三种算法对柑橘叶片的拉曼光谱背景进行扣除,使用偏最小二乘(PLS)方法建立定量模型;四种光谱预处理方法归一化(Normalization),Savitzky-Golay卷积平滑(SG smoothing, SG平滑)、多元散射校正(MSC)和Savitzky-Golay一阶导数(SG 1st Der)对扣除背景后的光谱进行进一步的优化处理。结果表明:采用原始光谱、BaselineWavelet、IRLS、ALS背景扣除处理后的光谱建立PLS模型,模型的相关系数r分别为0.858,0.828,0.885和0.862,交互验证均方根误差(RMSECV)分别为5.392,5.870,4.934和5.336,最佳因子数分别为8,3,8和8;IRLS背景扣除处理后的PLS模型的RMSECV最小,相关系数最高,建模效果最好。分别采用SG平滑、归一化、MSC和SG 1st Der预处理方法对IRLS背景扣除后光谱进行预处理并建立PLS模型,结果表明:IRLS光谱及其结合SG平滑、归一化、MSC和SG 1st Der四种预处理方法的PLS模型的R分别为0.885,0.897,0.852,0.863和0.888,RMSECV分别为4.934,4.715,5.595,5.182和4.962;最佳因子数分别为8,8,8,8和5;IRLS-SG平滑后PLS模型的RMSECV最小,模型效果最优。对IRLS-SG平滑预处理后的PLS模型展开验证,预测相关系数r为0.844,预测均方根误差(RMSEP)为5.29,预测精确度较高。采用拉曼光谱结合三种光谱背景扣除方法和四种预处理方法对柑橘叶片叶绿素含量进行定量分析表明:采用IRLS背景扣除结合SG平滑预处理后的PLS模型最优,建模集r为0.897,RMSECV为4.715;预测集r为0.844,RMSEP为5.29,预测精度较高。拉曼光谱结合背景扣除方法可以为柑橘叶片叶绿素含量的定量分析提供一种快速简便的分析方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号