首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A titanium dioxide sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. The sol was prepared by a process where HCl was added to a gel of hydrated titanium oxide to dissolve it. The resulting aqueous titanic acid solution was heated to form titanium dioxide sol. The effects of preparation parameters were investigated. TiCl4 was slowly added to distilled water at 5°C. Aqueous solution of sodium hydroxide was added to adjust the pH of the system to 8–12. After aging for a period of time, the peptized sol was filtered and sufficiently washed. The filtered cake was repulped in water. Hydrochloric acid was slowly added to the solution with stirring. After condensation reaction and crystallization, a transparent sol with suspended TiO2 was formed. XRD results show that the crystalline phase was anatase. The suspended TiO2 particles were rhombus primary particles with the major axis ca. 20 nm and the minor axis ca. 5 nm. The TiO2 particles prepared at pH 8 had the largest surface area of 141 cm3/g and it was microporous. The compositions of the solution which yielded the smallest suspended TiO2 particles were TiO2:HCl (35% HCl) = 1:1 (molar ratio), concentration of TiO2 = 10%. Hydroxypropyl cellulose with viscosity of 150–400 cps was added as a dispersant. The sol was excellent in dispersibility and long-term stability. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The dip-coating on glass can be less than three times to have one monolayer TiO2. The transparent TiO2 thin film had strong hydrophilicity after being illuminated by UV light.  相似文献   

2.
TiO2 nano particles with photo catalytic property were mixed with silica alkoxides solution with HAuCl4/4H2O. STS02 (purchased from Ishihara Sangyo Kaisha, Ltd.) was used as TiO2 nano particles. The average size of TiO2 nano particles was 7 nm in diameter. The gel film coated on glass substrate was heated and then HAuCl4/4H2O was thermally reduced at 390 degree. The coated silica gel film doped with HAuCl4/4H2O and TiO2 nano particles was turned into light blue from colorless gel film after heat treatment. The optical absorption spectrum showed the absorption peak of the film heated at 390 degree shifted to at about 650 nm compare to SiO2 film doped with Au nano particles without TiO2 nano particles that had absorption peak at 542 nm. On the other hand, the film formed from coating solution incorporated TiAA (titanium tetraisopropoxide chelated by acetyl acetone) as TiO2 source instead of TiO2 nano particles had absorption peak at 550 nm. That means there was no effect on formation of Au nano particles when TiAA was incorporated. The average size of the particles was found to be about 23 nm in diameter by TEM observation. Furthermore EDX (Energy Dispersive X-ray Fluorescence Spectrometer) analysis of nano particles in the film indicated that Au-TiO2 nano hybrid particles were formed. Simulation results also supported that the size in diameter of Au nano particles had little influence on the absorption coefficient of the silica film doped with Au nano particles.  相似文献   

3.
The structure of porous TiO2 films and TiO2:poly(N-vinylcarbazole) (PVK) composite films is investigated with time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The TiO2 films have been prepared by application of a sol–gel process with a diblock copolymer as structure directing agent, and the conductive polymer PVK is infiltrated in the porous network by spin coating and solution casting. The films show a hierarchical pore structure with mesopores 52 nm in size and additional large macropores with a diameter of about 180 nm. By matching the scattering contrast of the TiO2 with the polymer information about the penetration of the polymer in the pores is determined. Whereas in the PVK film prepared by solution casting the pores are filled to a high degree; in the spin coated film, PVK wets only the TiO2 pore walls and forms a solid overlying layer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1628–1635, 2010  相似文献   

4.
Porous anatase is attractive because of its notable photo-electronic properties. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60°C and the solvent was extracted (aerogel). Mesoporous TiO2 consisting of anatase nano-particles, about 5 nm in diameter, have been obtained. Thermal evolution of the microstructure of the aerogel was evaluated by TGA-DTA, N2 adsorption, TEM and XRD, and discussed in comparison with that of the corresponding xerogel. The diffraction peaks of anatase were found for the as-extracted gel while the xerogel dried at 90°C was amorphous. After calcination at 600°C, the average pore size of the aerogel, about 20 nm in diameter, was 4 times larger than that of the xerogel, and the pore volume, about 0.35 cm3 g−1, and the specific surface area, about 60 m2 g−1, were 2 times larger than those of the xerogel. XRD peaks of rutile have been found after calcination at 600°C. The particle sizes of anatase and rutile are about 13 and 25 nm in diameter, respectively. The surface morphology of TiO2 nano-particles has been discussed in terms of their surface fractal dimensions estimated from the N2 gas adsorption isotherms.  相似文献   

5.
TiO2−SiO2 fibres with 0, 5, 10 and 20 volume % SiO2 have been prepared by drawing from a gel followed by sintering at different temperatures. Nearly one meter long fibres can be drawn easily in conditions of about 50% relative humidity. Addition of SiO2 inhibits the crystallisation of TiO2 and also the anatase → rutile transformation and improves the strength of the fibres. While the pure TiO2 fibres are brittle, those with 5, 10 and 20 volume % SiO2 are flexible and strong. Tensile strength values as high as 3 GPa have been achieved in the 10 volume % SiO2−TiO2 fibres. Fibres heated above 900°C are brittle. The shape of the cross section of the fibres is found to depend on their diameters.  相似文献   

6.
Titanium dioxide (TiO2), especially in its anatase form, is an effective photocatalyst under ultraviolet (UV) light. The particle size of TiO2 is a critical factor to determine its photoactivity based on its quantum effectiveness under light irradiations. Thus, nanocrystalline TiO2 has been widely accepted to significantly enhance this effect. The sol–gel method is generally used to synthesize the anatase form of nanocrystalline TiO2. In this study, we expanded the synthesis method of TiO2 to high pressures under direct heating (hydrothermal method) and indirect heating (microwave-assisted method). It was found that pH value is one of the major factors to control nano-sizes of TiO2 particles, and the neutral condition in all methods is preferable for controlling the sizes of the prepared TiO2 particles. The microwave-assisted method further improves quality of synthesized nano-size TiO2 below 10 nm. These results have been confirmed by both the direct size measurement using TEM images and indirect determination using XRD peaks. The collected samples are further analyzed using UV–Vis spectroscopy to identify the particle size-dependent photoreactivity and to confirm the effectiveness of microwave-assisting under neutral conditions. DSC is also a powerful tool to identify the crystalline transition of TiO2.  相似文献   

7.
Pure and (0.5–3 at%) vanadium doped TiO2 nanoparticles have been synthesized by wet chemical method. The as synthesized materials have been characterized by using XRD, atomic force microscope (AFM), Raman, EPR and UV–vis spectroscopy techniques. From XRD studies, both pure as well as vanadium doped TiO2 have been found to show pure anatase phase. The value of lattice constant c is smaller in doped TiO2 as compared to undoped and has been found to decrease with increase in vanadium concentration. AFM studies show formation of spherical particles with particle size ~23 nm in all the samples. Photochromic behavior of these materials has been studied by making their films in alkyd resin. Vanadium doped TiO2 films show reversible change in color from beige-yellow to brownish violet on exposure to UV light. The mechanism of coloration and bleaching process has been discussed.  相似文献   

8.
In this work bimodal structured titanium dioxide (TiO2) microsphere has been prepared from commercial TiO2 powder and nano-sized titania gel via sol–gel spray-coating technique. Crystallization and transformation behavior of titania gel were investigated. The results revealed that the crystallization and transformation of anatase particles were substantially affected by the concentration of solvent and calcination temperature. Anatase crystallite size of 10 nm was obtained at mole ratio of solvent/precursor 50/1 and calcination temperature of 450 °C. The prepared nano-sized titania gel was embedded within the core (commercial TiO2, P25) during the spraying process. The prepared TiO2 microsphere was characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), field emission electron microscope (FESEM) and micropore analysis. The photocatalytic activity was monitored by following the degradation of phenol with activity benchmarked against commercial P25 (Degussa). The increase of photocatalytic activity of TiO2 microsphere was attributed to the nano-sized anatase crystallite which has been incorporated into the TiO2 microsphere.  相似文献   

9.
The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemicalmethod, using zinc chloride and titanium sulphate as the starting materials. The as-synthesized products were characterized by X-ray diffraction, field emission scanning electronmicroscopy and room temperature photoluminescence measurement. The photocatalytic ac-tivity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti3O5 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very effcient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.  相似文献   

10.
Many types of TiO2-SiO2 (Ti:Si=50:50 mol%) were prepared by the sol-gel procedure with and without 2-methyl-2, 4-pentanediol (MPD) as an organic ligand. The effect of MPD on the gel structure and the properties of the TiO2 crystals were studied by XRD and raman spectroscopy, and the effect of the sol standing time on the properties of the TiO2 crystals were also studied by XRD spectroscopy. In the gels with MPD, anatase of TiO2 appeared at approximately 580°C, and the crystal structures were similar despite the difference in the gel preparation procedure. The titania gels with MPD were presumed to be dispersed in the silica gel matrix without any Ti-O-Si bond. In the presence of MPD, the formation of titania gels is controlled and the specified TiO2 crystal is produced.  相似文献   

11.
The mineral ilmenite is one of the most abundant ores in the Earth′s crust and it is the main source for the industrial production of bulk titanium oxide. At the same time, methods to convert ilmenite into nanostructures of TiO2 (which are required for new advanced applications, such as solar cells, batteries, and photocatalysts) have not been explored to any significant extent. Herein, we describe a simple and effective method for the preparation of rutile TiO2 nanorods from ball‐milled ilmenite. These nanorods have small dimensions (width: 5–20 nm, length: 50–100 nm, thickness: 2–5 nm) and possess large specific surface areas (up to 97 m2 g?1). Dissolution/hydrolysis/precipitation is proposed as a growth mechanism. The nanorods were found to have attractive photocatalytic properties in the degradation of oxalic acid. Their photocatalytic activity is close to that of the benchmark Degussa P25 material and better than that of a commercial high‐surface‐area rutile powder.  相似文献   

12.
聚苯乙烯球模板法制备二氧化钛纳米环   总被引:1,自引:0,他引:1  
TiO2 nanorings were synthesized using the polystyrene nanospheres of 85 nm prepared by micro-emulsion polymerization as template. The result TiO2 nanorings were characterized by FE-SEM and XRD. Results showed that the inner diameter of the TiO2 nanorings matched size of the polystyrene nanospheres used, and the thickness with nanometer size depended on that of the TiO2 gel coated on the PS surface.  相似文献   

13.
The present study deals with the gel formation tendency in the ternary TeO2-TiO2-ZnO system. Depending on the TiO2 amount, the gelation occurred at different times and subsequently several gel formation regions have been determined. Homogeneous, transparent and monolithic gels were obtained using combination of organic and inorganic precursors during the synthesis. Using XRD analysis it was established that upon the heating composites were obtained which contain an amorphous phase and different crystalline phases: TiO2 (anatase), TiO2 (rutile), α-TeO2 and ZnTeO3, depending on composition. The IR results showed that the short range order of the amorphous phases which are part of the composite materials consist of TiO6, ZnO4 and TeO4 structural units. Using UV–Vis spectroscopy it was established that the absorption edge of the gels varied from 330 nm to 364 mm and the increase in TiO2 content caused a red shifting of the cut-off. The calculated Eg values are in the range 3.41–3.75 eV higher than that of pure TiO2, TeO2 and ZnO oxides. The XPS results showed that the Te atoms in the surface layers of the samples studied exist in several chemical states as Te2+, Te0, but Te6+ dominates. Octahedrally coordinated Ti4+ ions are observed in the gels and in the samples annealed at 200 °C but a small amount of tetrahedrally coordinated Ti4+ is also detected, which indicates the incomplete polymerization of TiO6 units.  相似文献   

14.
A sol–gel method has been proposed to prepare uniform TiO2 nanoparticles whose average size is about 30 nm. The prepared nanometer TiO2 particles are modified by acetamide via different self-assembled processes. X-ray diffraction analyses, scanning electron microscopy, and Fourier transform infrared spectrometry are used to determine the structure of the nanoparticles. The results indicate that the different synthesis processes do not change the morphology of the TiO2/acetamide nanoparticles; nevertheless, they affect the interaction between amide and acetamide. The electrorheological (ER) activity is studied by shear stress under DC electric field. The acetamide-modified TiO2 ER fluid shows notable ER activity with shear stress about 45 kPa (at 5 kV/mm), which outclasses the shear stress (2 kPa) of unmodified TiO2 ER fluid. It is also found that the ER effect is very sensitive to the interaction of molecules on TiO2 particles. The chemical bond between core and shell can enhance the ER activity of the sample.  相似文献   

15.
纳米TiO2表面接枝聚苯乙烯及其抗紫外老化研究   总被引:1,自引:0,他引:1  
徐立新  李为立  杨慕杰 《化学学报》2007,65(17):1917-1921
利用偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对纳米TiO2进行表面预处理, 在此基础上通过分散聚合工艺制备聚苯乙烯(PSt)接枝包覆纳米TiO2. 运用红外光谱、热重分析及透射电镜对处理前后纳米TiO2进行了表征, 并通过紫外人工加速老化试验比较了表面处理前后纳米TiO2对聚丙烯/聚苯乙烯(PP/PSt)体系的抗紫外老化性能. 结果显示: KH570与纳米TiO2表面羟基进行了缩合, PSt在粒子表面实现了接枝聚合, 接枝率约为60% (w); PSt接枝包覆纳米TiO2呈均匀的微球形, 纳米TiO2被包覆于微球内部; PSt接枝包覆后纳米TiO2在PP/PSt中的分散效果较改性前有显著的改进, 其抗紫外老化性能明显优于改性前体系.  相似文献   

16.
静电纺丝技术制备TiO2@SiO2亚微米同轴电缆与表征   总被引:2,自引:0,他引:2  
张双虎  董相廷  徐淑芝  王进贤 《化学学报》2007,65(23):2675-2679
用静电纺丝技术成功制备出大量的TiO2@SiO2亚微米同轴电缆. 用TGA-DTA, XRD, SEM, TEM, EDS, FTIR分析技术对样品结构和组成进行了系统的表征. 结果表明, 得到的产物为TiO2@SiO2亚微米级同轴电缆, 以无定型SiO2为壳层, 晶态TiO2为芯层, 电缆平均直径450 nm, 壳层厚度90 nm, 电缆长度>300 μm, 同时在样品中发现个别纤维呈现管状结构, 对其形成机理进行了讨论.  相似文献   

17.
Nano-TiO2 was synthesized by sol–gel method. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) images, transmission electron microscope (TEM), BET surface area measurement and DRS analysis. The formation of anatase phase nano-TiO2 was confirmed by XRD measurements and its crystalline size is found to be 15.2 nm. SEM images depict the crystalline nature of prepared TiO2. The BET surface area of prepared TiO2 is found to be 86.5 m2 g?1 which is higher than that of commercially available TiO2–P25. The photocatalytic activity of prepared anatase phase TiO2 has been tested for the degradation of two azo dyes: Reactive Red 120 (RR 120) and Trypan Blue (TB) using solar light. The photocatalytic activity of nano-TiO2 is higher than TiO2–P25 under solar light. The mineralization of dyes has been confirmed by chemical oxygen demand (COD) measurements.  相似文献   

18.
Porous stainless steel (PSS) supported TiO2 membrane was synthesized from colloidal TiO2 sol by the sol–gel technique. Morphology and phase structure of the obtained membranes were regulated through optimizing the synthesis parameters including organic binders, aging periods of the parent sol and concentrations of the casting solutions as well as the sintering temperatures. Polyvinyl alcohol (PVA) 1750 was found to be feasible to fabricate TiO2 membrane with relatively flat surface and homogeneous morphology without crack. The aging period of the parent sol, which was revealed to be very important to the morphology of the particles deposited in the membranes on PSS, was decided to be 24 h. The concentration, under which the membranes could avoid macro-pores and have a uniform thickness of approximately 8 μm, was regulated to 0.0036 mol/l. Besides, a homogeneous microstructure with grain sizes of 0.08–0.2 μm was obtained in the membrane with a pure rutile phase when sintered at 850 °C. The obtained PSS supported TiO2 membrane with homogeneous microstructure and rutile phase may be very promising for practical applications.  相似文献   

19.
《化学:亚洲杂志》2017,12(1):95-100
Titanium dioxide (TiO2) spheres are potential candidates to fabricate three‐dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near‐infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self‐assembly of TiO2 spheres, have been prepared by means of sol–gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ ‐potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self‐assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.  相似文献   

20.
Flower like structure TiO2 thin films have been grown onto ITO coated glass substrates by sol–gel method. TiO2 nano flowers have been sensitized using CdS quantum dots prepared using simple precursors by chemical method. The assembly of CdS quantum dots with TiO2 nano flower has been used as photo-electrode in quantum dot sensitized solar cells. The surface morphology has been studied using scanning electron microscope; it shows that the film exhibits flower like structure. The absorption spectra reveals that the absorption edge of CdS quantum dot sensitized TiO2 nano flower shifts towards longer wavelength side when compared to the absorption edge of TiO2 nano flower. The efficiency of the fabricated CdS quantum dot sensitized TiO2 nano flower based solar cell is 0.66%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号