首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductivity σ of a microemulsion series consisting of CTAB + butanol + octane, in which a solution of Al(NO3)3 0.8 M + Zn(NO3)2 0.4 M was gradually added, was studied at room temperature as a function of its composition φ. The addition of nitrate salts solution took place in four different ratios of (butanol + CTAB):octane = 0.2, 0.4, 0.6 and 0.8. Initially, all those four systems are (water in oil, w/o) microemulsions and the gradual addition of the solution of the nitrate salts transforms them to bicontinuous ones. The conductivity increases gradually, but with different rate in each case, and the corresponding critical exponents at the percolation threshold were determined from the curves σ = f(φ). Next at three different compositions of microemulsions, corresponding to ratios (butanol + CTAB):octane = 0.4, 0.6 and 0.8 and ratio of the nitrate salts solution x ≈ 0.25, spinels ZnAl2O4 were isolated/prepared. XRD, SEM and N2 adsorption-desorption measurements were used to determine the structure and texture of those solids. From those measurements the surface area (Sp), the pore volume (Vp), the size of crystallites and the average pore connectivity (c) were found. Those properties showed considerable variation and dependence on the composition of the original microemulsions employed in the preparation, a fact indicating that the structure and texture of the obtained solids can be manipulated at will via the composition of microemulsion used.  相似文献   

2.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

3.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

4.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

5.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol.  相似文献   

6.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

7.
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation.  相似文献   

8.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

9.
CO and O2 co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O2 (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O2 to CO ratio (<10), and temperature (150 °C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr.  相似文献   

10.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

11.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O.  相似文献   

12.
S.D. Sartale 《Surface science》2006,600(22):4978-4985
The growth of Pt nanoclusters on thin film Al2O3 grown on NiAl(1 0 0) was studied by using scanning tunneling microscopy (STM). The samples were prepared by vapor depositing various amounts of Pt onto the Al2O3/NiAl(1 0 0) at different substrate temperatures in ultra high vacuum (UHV). The STM images show that sizeable Pt nanoclusters grow solely on crystalline Al2O3 surface. These Pt clusters appear to be randomly distributed and only a few form evident alignment patterns, contrasting with Co clusters that are highly aligned on the crystalline Al2O3. The size distributions of these Pt clusters are rather broader than those of the Co clusters on the same surface and the sizes are evidently smaller. With increasing coverage or deposition temperature, the number of larger clusters is enhanced, while the size of the majority number of the clusters remains around the same (0.4 nm as height and 2.25 nm as diameter), which differs drastically from the Pt clusters on γ-Al2O3/NiAl(1 1 0) observed earlier. These Pt cluster growth features are mostly attributed to smaller diffusion length and ease to form stable nucleus, arising from strong Pt-Pt and Pt-oxide interactions and the peculiar protrusion structures on the ordered Al2O3/NiAl(1 0 0). The thermal stability of Pt nanoclusters was also examined. The cluster density decreased monotonically with annealing temperature up to 1000 K at the expense of smaller clusters but coalescence is not observed.  相似文献   

13.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

14.
M.S. Zei 《Surface science》2006,600(9):1942-1951
The growth and structures of aluminum oxides on NiAl(1 0 0) have been investigated by RHEED (reflection high energy electron diffraction), complemented by LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and STM (scanning tunneling microscopy). Crystalline θ-Al2O3 phase grows through gas-phase oxidation on the NiAl(1 0 0) substrate with its a and b-axes parallel to [0 −1 0] and [0 0 1] direction of the substrate, respectively, forming a (2 × 1) unit cell. Whilst, three-dimensional nano-sized NiAl(1 0 0) protrusions and Al2O3, NiAl(0 1 1) clusters were found to co-exit at the surface, evidenced by extraordinary transmission spots superposed to the substrate reflection rods in the RHEED patterns. Particularly, the NiAl(0 1 1) clusters develop with their (0 1 1) plane parallel to the NiAl(1 0 0) surface, and [1 0 0] axis parallel to the [0 −1 1] direction of the substrate surface. STM observation combined with information from AES and TPD (temperature programmed desorption) suggest the formation of these 3D structures is closely associated with partial decomposition of the crystalline oxides during annealing. On the other hand, smoother (2 × 1) oxide islands with thickness close to a complete monolayer of θ-Al2O3 can be formed on NiAl(1 0 0) by electro-oxidation, in contrast with the large crystalline films formed by gas-oxidation.  相似文献   

15.
In this study several complementary methods as XRD, HRTEM, O2 and H2 adsorption, as well as H2-O2 titration were used for characterization of the metallic phase in 0.5-3.0 wt.% Pt/ZnAl2O4 catalysts. Three nanocrystalline ZnAl2O4 spinels used as a supports were prepared by the solvothermal and co-precipitation method. It was found that irrespective of the preparation method they form very good support materials with a high capacity to achieve high platinum dispersion. O2 and H2 chemisorption data showed metal dispersion up to 90% and good correspondence with HRTEM results was observed. The H2-O2 titration method may be applied for determination of Pt dispersion only in the high-loaded Pt/ZnAl2O4 catalysts. The catalytic performances of Pt supported on the prepared spinels were evaluated in the propane total oxidation reaction.  相似文献   

16.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

17.
LiNi1 - y − zCoyMnzO2 (y = 0.25, 0.35, 0.5, 0.6; z = 0.1, 0.2), LiNi0.63Cu0.02Co0.25Mn0.1O2, LiNi0.65Co0.25Mn0.08Al0.02O2, LiNi0.65Co0.25Mn0.08Mg0.02O2 and LiNi0.65Co0.25Mn0.08Al0.01Mg0.01O2 cathode materials were synthesized by a soft chemistry EDTA-based method. Structural and transport properties of pristine and delithiated materials (LixNi0.65Co0.25Mn0.1O2, LixNi0.55Co0.35Mn0.1O2 and LiNi0.63Cu0.02Co0.25Mn0.1O2 oxides) are presented. In the considered group of oxides there is no correlation between electrical conductivity and the a parameter (M-M distance in the octahedra layers). The results of electrochemical performance of cathode materials are presented. The best stability during first 10 cycles was obtained for Li/LixNi0.63Cu0.02Co0.25Mn0.1O2 cell due to enhanced kinetics of intercalation process.  相似文献   

18.
In this work we analyzed the geometry and the chemical interactions for c-C5H8 adsorption on Ge (0 0 1), using density functional theory calculations (DFT). We examined the changes in the atomic interactions using a slab model. We considered two cases, the cyclopentene adsorption on Ge(0 0 1) and on dimer vacancies on the surface. We found an average distance H-Ge, -C-Ge and C-Ge of 1.50, 1.70 and 1.65 Å, respectively, on dimer vacancies; and an average C-Ge distance of 2.05 Å on Ge-Ge dimer. We also computed the density of states (DOS) and the DOS weighted overlap populations (OPDOS) corresponding to C-C, C-Ge, C-H, and Ge-Ge bonds. During adsorption the main contribution are the CC double bond in both cases, and the next C and the H's belonging to this bonds in the case of adsorption on dimer vacancies. The orbital contribution includes participation of the 2py and 2pz orbitals corresponding to unsaturated C atoms, 2pz corresponding to side saturated C, and the 4p orbitals of Ge for the adsorption on dimer vacancies; 2s and 2pz orbitals corresponding to double bond C atoms, 4s and 4pz orbitals of Ge for the adsorption on Ge(0 0 1).  相似文献   

19.
The surface reaction and desorption of sulfur on Rh(1 0 0) induced by O2 and H2O are investigated with X-ray photoelectron spectroscopy (XPS) technique. The Rh(1 0 0) sample covered with atomic sulfur is prepared by means of the exposure to H2S gas, and subsequently the sample is annealed under O2 or H2O atmosphere. The XPS results show that atomic sulfur adsorbed on Rh(1 0 0) reacts with O2 and desorbs from the surface at 473 K or more. On the other hand, atomic sulfur can not be removed from Rh(1 0 0) surface by H2O at any temperature.  相似文献   

20.
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号