首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With reflection high-energy electron diffraction (RHEED) and scanning-tunnelling microscopy (STM), we made measurements on Co and Pt nanoclusters grown by vapour deposition on a thin film of Al2O3/NiAl(1 0 0). The results show that the annealed Co nanoclusters (with mean diameters 2.5, 3.4, 5.8 nm and heights 0.7, 1.5, 1.5 nm, respectively) and Pt nanoclusters (with mean diameter 2.25 nm and height 0.4 nm) are highly crystalline and that their structures are significantly affected by the oxide substrate. Structural analysis based on the RHEED patterns indicates that both Co and Pt clusters have a fcc phase and grow with their (0 0 1) facets parallel to the θ-Al2O3(1 0 0) surfaces, and with their [1 1 0] and [−1 1 0] axes along the [0 1 0] and [0 0 1] directions of the oxide surface, respectively, so (Co(0 0 1)[1 1 0]∥Al2O3(1 0 0)[0 1 0] and Pt(0 0 1)[1 1 0]∥Al2O3(1 0 0)[0 1 0]). This growth is optimal as the Co and Pt fcc (0 0 1) facets match well with the oxygen mesh. To minimize the lattice mismatch, the lattice parameter of the Co clusters expands 4-5% relative to fcc Co bulk, whereas the lattice parameter of the Pt clusters remains near the bulk value, as the Pt fcc (0 0 1) plane has a close lattice match with the oxide surface.  相似文献   

2.
M.S. Zei 《Surface science》2006,600(9):1942-1951
The growth and structures of aluminum oxides on NiAl(1 0 0) have been investigated by RHEED (reflection high energy electron diffraction), complemented by LEED (low energy electron diffraction), AES (Auger electron spectroscopy) and STM (scanning tunneling microscopy). Crystalline θ-Al2O3 phase grows through gas-phase oxidation on the NiAl(1 0 0) substrate with its a and b-axes parallel to [0 −1 0] and [0 0 1] direction of the substrate, respectively, forming a (2 × 1) unit cell. Whilst, three-dimensional nano-sized NiAl(1 0 0) protrusions and Al2O3, NiAl(0 1 1) clusters were found to co-exit at the surface, evidenced by extraordinary transmission spots superposed to the substrate reflection rods in the RHEED patterns. Particularly, the NiAl(0 1 1) clusters develop with their (0 1 1) plane parallel to the NiAl(1 0 0) surface, and [1 0 0] axis parallel to the [0 −1 1] direction of the substrate surface. STM observation combined with information from AES and TPD (temperature programmed desorption) suggest the formation of these 3D structures is closely associated with partial decomposition of the crystalline oxides during annealing. On the other hand, smoother (2 × 1) oxide islands with thickness close to a complete monolayer of θ-Al2O3 can be formed on NiAl(1 0 0) by electro-oxidation, in contrast with the large crystalline films formed by gas-oxidation.  相似文献   

3.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

4.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

5.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

6.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

7.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

8.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

9.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

10.
The dehydrogenation of CH4 on the Co(1 1 1) surface is studied using density functional theory calculation (DFT). It is found that CH4 is favored to dissociate to CH3 and then transforms to CH2 and CH by sequential dehydrogenation, and CH4 activation into CH3 and H is the rate-determining step on the Co(1 1 1) surface. CH2 is quite unstable on Co(1 1 1) surface. CH dehydrogenation into C and H is difficult. CH3 and H prefer to adsorb on 3-fold hollow hcp and fcc sites, and CH2, CH and C prefer to adsorb on hcp sites.  相似文献   

11.
The growth of Co on thin Al2O3 layers on Ni3Al(1 0 0) was investigated by Auger electron spectroscopy, high resolution electron energy loss spectroscopy (EELS), and scanning tunneling microscopy. At 300 K, Co grows in three-dimensional clusters on top of the Al2O3 layer. A defect structure of the alumina layer plays a crucial role during the early stage of Co growth. After deposition of 10 Å of Co, a complete screening of the dipoles of the Al2O3 layer due to the Co film is found in the EELS measurements. Annealing the Co film reveals a process of coalescence of Co clusters and, above 700 K, diffusion of the Co atoms through the oxide film into the substrate takes place.  相似文献   

12.
LiNi1 - y − zCoyMnzO2 (y = 0.25, 0.35, 0.5, 0.6; z = 0.1, 0.2), LiNi0.63Cu0.02Co0.25Mn0.1O2, LiNi0.65Co0.25Mn0.08Al0.02O2, LiNi0.65Co0.25Mn0.08Mg0.02O2 and LiNi0.65Co0.25Mn0.08Al0.01Mg0.01O2 cathode materials were synthesized by a soft chemistry EDTA-based method. Structural and transport properties of pristine and delithiated materials (LixNi0.65Co0.25Mn0.1O2, LixNi0.55Co0.35Mn0.1O2 and LiNi0.63Cu0.02Co0.25Mn0.1O2 oxides) are presented. In the considered group of oxides there is no correlation between electrical conductivity and the a parameter (M-M distance in the octahedra layers). The results of electrochemical performance of cathode materials are presented. The best stability during first 10 cycles was obtained for Li/LixNi0.63Cu0.02Co0.25Mn0.1O2 cell due to enhanced kinetics of intercalation process.  相似文献   

13.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

14.
We present a self-organised approach for the synthesis of one-dimensional (1D) arrays of supported nanoclusters. By oxidising NiAl surfaces vicinal to the (1 0 0) plane tilted along the crystallographic direction [0 1 0], we produced ordered thin films of θ-Al2O3 that exhibit uniform protrusion stripes propagating uniquely along direction [0 0 1] of the NiAl. These protrusions are preferential centres for nucleation of metal deposited from a vapour; the nanoclusters grown from such metal are aligned and form massive 1D cluster arrays along direction [0 0 1]. The arrays of Co nanoclusters exhibit a diameter as small as 3 nm and length exceeding a micrometer. The results imply prospective applications for which a patterned assembly of nanoclusters is desired.  相似文献   

15.
The intramolecular features of carbon 60 and carbon 84 molecules on Si(1 1 1)-7 × 7 surfaces were studied under a UHV-scanning tunneling microscope. Carbon molecules preferentially appear in faulted halves, rather than in unfaulted halves and corner holes; they are embedded in silicon substrates. The orientation and details of the structure of carbon molecules are determined by applying various sample biases to the silicon substrate. As compared with other fullerenes, a bright pentagonal ring with nebulous clusters which represents the cage structure is clearly observed on top of carbon 60 molecules. The bright stripes associated with partitioned curves which depict eight features of asymmetrical C84 molecules are also investigated on Si(1 1 1)-7 × 7 surfaces. The orientations and possible configurations of C60 and C84 are considered in this work. The energy differences for various features of C60 and C84 molecules are estimated and discussed. The corresponding models with respect to each intramolecular feature are proposed and compared with recent theoretical calculation.  相似文献   

16.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

17.
The surface reaction and desorption of sulfur on Rh(1 0 0) induced by O2 and H2O are investigated with X-ray photoelectron spectroscopy (XPS) technique. The Rh(1 0 0) sample covered with atomic sulfur is prepared by means of the exposure to H2S gas, and subsequently the sample is annealed under O2 or H2O atmosphere. The XPS results show that atomic sulfur adsorbed on Rh(1 0 0) reacts with O2 and desorbs from the surface at 473 K or more. On the other hand, atomic sulfur can not be removed from Rh(1 0 0) surface by H2O at any temperature.  相似文献   

18.
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation.  相似文献   

19.
Chaoyang Fan 《Surface science》2006,600(2):461-467
A series of planar model catalysts were prepared by deposition of size-selected on Al2O3/NiAl(1 1 0), and hydrazine decomposition chemistry was used to probe their size-dependent chemical properties. Small Irn (n ? 15) on Al2O3/NiAl(1 1 0) are able to induce hydrazine decomposition at temperatures well below room temperature, with significant activity first appearing at Ir7. Both activity and product branching are strongly dependent on deposited cluster size, with these small clusters supporting only the simplest decomposition mechanism: dehydrogenation and N2 desorption at low temperatures, followed by H2 recombinative desorption at temperatures above 300 K. For Ir15, we begin to see ammonia production, signaling the onset of a transition to clusters able to support more complex chemistry.  相似文献   

20.
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号