首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
由于半导体超微粒子具有独特的尺寸量子化效应和表面效应[1~6],它在利用太阳能光催化降解有机污染物,有机光合成及光电转化等领域中有着极其广泛的应用.目前,大量的工作集中在超微颗粒表面上有机物的光反应过程的研究[7].  相似文献   

2.
CdS超微粒子薄膜电极的光电化学特性   总被引:11,自引:2,他引:11  
采用电化学方法制备了含不同粒度的CdS超微粒子薄膜电极,应用表面光电压谱和光电化学技术对电极的光电化学特性进行了研究。结果表明,这些电极具有明显的量子限域效应,同体相材料相经,CdS超微粒子萍奄极显示出较高的光电响应,说明该薄膜电极具有独特的光电压和电荷传输机理。  相似文献   

3.
采用乙醇还原法制备了金属Pt/三苯胺烯共轭分子纳米复合物(Pt@DPSDA),通过UV-vis、TEM、FTIR、XRD、荧光、光电化学等方法对纳米复合物进行了表征.三苯胺烯分子通过分子末端羧基与金属Pt纳米粒子表面原子相互作用,形成以金属Pt纳米粒子为核,三苯胺烯分子为壳的核/壳型纳米复合物.光照下纳米复合物中激发态有机分子与金属Pt纳米粒子之间具有较好的电子转移作用,Pt@DPSDA纳米复合物可以作为催化剂在紫外-可见光照下分解水获得氢气.  相似文献   

4.
李向清  李凤  康诗钊  穆劲 《应用化学》2010,27(12):1409-1412
采用静电自组装的方法,将带有相反电荷的水溶性卟啉--碘化三甲胺基苯基卟啉铜与CdSe纳米粒子交替沉积,制备了一种新型的有机-无机纳米复合薄膜。 紫外-可见吸收光谱表明,复合膜是逐层、均匀沉积的。 扫描电子显微镜照片显示复合膜中纳米粒子分布均匀,膜结构中缺陷少。 此外,还通过光谱手段系统地研究了该复合膜的发光性能、纳米粒子与卟啉之间的相互作用及膜的光稳定性。 研究结果发现,CdSe纳米粒子与CuTAPPI分子之间存在较强的相互作用,能产生由CuTAPPI到CdSe的光诱导电子转移。 而且,在该复合膜中CuTAPPI的光稳定性较高。  相似文献   

5.
氧化铁超微粒的光电化学特性   总被引:8,自引:1,他引:8  
近十年来,。J、粒1(smalParticle)或超微粒f(ultrafinParticle)研究在化学、物理、材料学科等领域中兴起[‘一‘].超微粒子是指粒径在Inm~几十n-m范围的物质山.快体(如金属、半导体)的性质并不是单个原子或分子本身的性质,而是由许多原子或分子在晶体中的周期排列造成的.当晶体的尺寸在纳米级范围内连续减小时,存在一个从金属或半导体的性质到分子或原子的性质的逐渐过渡.在这个变化范围内,半导体的光学性质有很大变化,金属的电化学行为也发生了变化.这被称为“尺寸量子化效应’.同时当半导体的尺寸在纳米范围时,其…  相似文献   

6.
L-B膜内银超微粒子的电化学制备及表征   总被引:1,自引:0,他引:1  
在8~14层硬脂酸银L-B膜内,用电化学还原法制备了纳米尺度的银超微粒子,实验表明,银超微粒子的形成是观察多层L-B膜高分辨STM图象的必要条件,利用STM技术不仅观察到8层L-B膜的六方排列的硬脂酸脂链结构,还直接观察到2~3nm直径的球形银超微粒子结构;首次报道L-B膜亲水层原子尺度的网状STM图象,该图象显示了脂链六方的(2×1)结构,是羧基之间由氢键自组织的结果;银超微粒子有很强的表面增强Raman散射效应,由此测得了两层L-B膜在1100~1200cm ~1范围的Raman光谱,为从分子水平认识两层L-B膜的有序性提供了实验基础。  相似文献   

7.
有机分子与金属及半导体之间的界面相互作用及界面间的电子转移反应是现代物理化及材料科学研究的重要课题.  相似文献   

8.
CdTe纳米晶与蛋白相互作用研究   总被引:10,自引:0,他引:10  
当半导体纳米晶的直径小于其电子的玻尔直径时 ,半导体纳米晶对电子具有量子限域效应 ,其发光波长与纳米晶的尺寸相关 .与有机荧光分子相比 ,荧光半导体纳米晶具有以下优点 :(1 )其激发谱在吸收阈值以上几乎是连续的 ,利于多波长激发 ;(2 )高强荧光发射 ,谱峰窄 ,峰形对称 ;(3 )发射波长随着粒径的增大而有规律地红移 ,只需改变粒径即可获得多色发光 ;(4)纳米晶的发光稳定性好 ,不易被光分解和漂白 .因此 ,半导体纳米晶作为新一代荧光生物标记物已有研究[1~ 6] .荧光生物标记要求使用水溶性的纳米粒子 ,水相合成半导体纳米晶操作简便、重复…  相似文献   

9.
Ⅲ-Ⅴ族半导体纳米粒子合成的进展   总被引:6,自引:0,他引:6  
半导体科学技术是现代信息技术的基础,Ⅲ-Ⅴ族半导体纳米材料受垤广泛的重视。采取有机液相合成方法是制备Ⅲ-Ⅴ话半导体纳米粒子的重要途径。本文综述了近几年合成Ⅲ-Ⅴ话半导体纳米粒子的进展情况。  相似文献   

10.
包覆硬脂酸膜α—Fe2O3超微粒子的光谱及光电化学研究   总被引:10,自引:0,他引:10  
采用相转移法制备了以硬脂酸(ST)修饰的α-Fe2O3超微粒子,测量了其紫外-可见吸收光谱,随着粒子尺寸的减小,光谱吸收阈值发生红移,表现介电限域效应,有循环伏安法和光电流~电势曲线研究了介电限域效应对α-Fe2O3超微粒子电化学及光电化学性质的影响,循环伏安结果表明,表面修饰ST的α-Fe2O3超微粒子电化学可逆 性较裸露粒子好,光电流-电位的关系表明,超微粒子周围的介的介质性能也影响了微粉的光  相似文献   

11.
The photovoltaic features and photo-induced interfacial charge transfer of CuPc-modified Q-CdS films were investigated by surface photovoltage spectra and optical absorption spectra. The results show that the interfacial charge transfer and photosensitization between CuPc and Q-CdS occur under illumination. Based on the observations, the generation and processes of the charge transfer are proposed and discussed.  相似文献   

12.
The S-scheme heterojunction is flourishing in photocatalysis because it concurrently realizes separated charge carriers and sufficient redox ability. Steady-state charge transfer has been confirmed by other methods. However, an essential part, the transfer dynamics in S-scheme heterojunctions, is still missing. To compensate, a series of cadmium sulfide/pyrene-alt-difluorinated benzothiadiazole heterojunctions were constructed and the photophysical processes were investigated with femtosecond transient absorption spectroscopy. Encouragingly, an interfacial charge-transfer signal was detected in the spectra of the heterojunction, which provides solid evidence for S-scheme charge transfer to complement the results from well-established methods. Furthermore, the lifetime for interfacial charge transfer was calculated to be ca. 78.6 ps. Moreover, the S-scheme heterojunction photocatalysts exhibit higher photocatalytic conversion of 1,2-diols and H2 production rates than bare cadmium sulfide.  相似文献   

13.
应用电化学方法和电化学原位红外反射光谱(electrochemical in-situ FTIR)等研究了纤维蛋白原在Pt电极上的界面电化学行为.结果表明:纤维蛋白原在Pt电极上的吸附使电极的析氢与氧脱附过程减弱,影响程度随扫速的增加而增强;同样纤维蛋白原的吸附会降低亚铁氰化钾-铁氰化钾电对的氧化还原反应可逆性和电流;在-0.1~0.6V(vs.SCE)扫描范围内没有出现纤维蛋白原的特征"氧化还原"峰.电化学原位红外反射光谱测试表明纤维蛋白原在0.3~0.5V(vs.SCE)间发生化学反应,有新的产物生成.  相似文献   

14.
The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.  相似文献   

15.
Solar fuels have proven to be one of the important promising approaches to provide clean energy of H2. It is an effective strategy for H2 production to construct photocatalytic systems using semiconductor as a sensitizer and molecular catalyst as the H2 evolution catalyst. In the semiconductor-molecular photocatalyst systems (SMP systems) for proton reduction, the interfacial charge transfer, including electron and hole transfer, is the determining factor for the photocatalytic process from kinetic aspects. The knowledge of the interfacial charge transfer is of utmost importance for understanding the photocatalytic systems. This review focuses on the interfacial charge transfer in SMP systems for proton reduction, with a special emphasis on the advances in the studies on the kinetic aspects of interfacial charge transfer.  相似文献   

16.
Meyer GJ 《Inorganic chemistry》2005,44(20):6852-6864
Strategies toward the realization of molecular control of interfacial charge transfer at nanocrystalline semiconductor interfaces are described. Light excitation of coordination compounds, based on (dpi)6 transition metals, anchored to wide band-gap semiconductors, such as TiO2, can initiate electron-transfer processes that ultimately reduce the semiconductor. Such photoinduced charge-separation processes are a key step for solar energy conversion. The thermodynamics and kinetic rate constants for three different interfacial charge separation mechanisms are discussed. Tuning the energetic position of the semiconductor conduction band relative to the molecular sensitizer has provided new insights into interfacial charge transfer. Supramolecular compounds that efficiently absorb light, promote interfacial electron transfer, and feature additional functions such as intramolecular electron transfer when bound to semiconductor surfaces have also been studied. New approaches for enhancing charge-separation lifetimes for solar energy conversion are presented.  相似文献   

17.
Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal–molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.  相似文献   

18.
对半导体材料进行表面化学修饰或改性,是提高其光催化活性、有效利用光能的一种重要措施.本文结合水热化学法、化学池沉积和后续热处理等,分别制备了未修饰α-Fe2O3和钒修饰的α-Fe2O3光电极材料.利用X射线粉末衍射(XRD)谱和紫外-可见漫反射光谱(UV-Vis-DRS)技术分析表征了材料的晶相结构、化学组成和光谱吸收等固体物理化学性能;利用光电流测量和电化学交流阻抗谱(EIS)实验技术,并基于1 mol·L-1NaOH (pH 13.6)中的光电化学水分解反应,研究了钒修饰对α-Fe2O3材料光电化学性能的增强作用.结果表明,与未修饰的Fe2O3材料相比,钒修饰α-Fe2O3样品出现FeVO4的XRD特征峰,但临界光吸收波长未发生红移;钒修饰使Fe2O3材料的光电流增大4-5倍、光生载流子在电极表面的复合几率降低了3/4-4/5、电极表面电荷传递速率(表观一级速率常数)明显提高.结合Fe2O3/溶液界面半导体能带模型和有关研究结果,分析了研究体系的界面电荷动力学传输过程以及钒修饰使α-Fe2O3材料光电化学性能增强的原因.  相似文献   

19.
Solid-state lithium metal batteries(SSLBs) contain various kinds of interfaces, among which the solid electrode|solid electrolyte(ED|SE) interface plays a decisive role in the battery's power density and cycling stability. However, it is still lack of comprehensive knowledge and understanding about various interfacial physical/chemical processes so far. Although tremendous efforts have been dedicated to investigate the origin of large interfacial resistance and sluggish charge(electron/ion) transfer process, many scientific and technological challenges still remain to be clarified. In this review, we detach and discuss the critical individual challenge, including charge transfer process, chemical and electrochemical instability, space charge layers, physical contact and mechanical instability. The fundamental concepts, individual effects on the charge transfer and potential solutions are summarized based on material's thermodynamics, electrode kinetics and mechanical effects. It is anticipated that future research should focus on quantitative analysis, modeling analysis and in-situ microstructure characterizations in order to obtain an efficient manipulation about the complex interfacial behaviors in all solid-state Li batteries.  相似文献   

20.
直接热氧化制备氧化钛薄膜电极的研究Ⅱ.光电性能   总被引:1,自引:0,他引:1  
采用电化学阻抗谱和光电响应等手段对在光照下热氧化制备的氧化钛膜的阻抗和光电性质进行了研究.结果表明,随氧化温度升高,界面电荷转移电阻减小,光电流逐渐增大,苯胺的光电催化速率降解增大.温度大于600℃后,电极的光电性能急剧降低.热氧化制备的氧化钛膜电极的结构、界面电荷转移电阻、光电流和光电催化降解苯胺的速率之间存在良好的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号