首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

2.
Chromium-doped silicon clusters, CrSi(n) (-)(n = 3-12), were investigated with anion photoelectron spectroscopy and density functional theory calculations. The combination of experimental measurement and theoretical calculations reveals that the onset of endohedral structure in CrSi(n) (-) clusters occurs at n = 10 and the magnetic properties of the CrSi(n) (-) clusters are correlated to their geometric structures. The most stable isomers of CrSi(n) (-) from n = 3 to 9 have exohedral structures with magnetic moments of 3-5μ(B) while those of CrSi(10) (-), CrSi(11) (-), and CrSi(12) (-) have endohedral structures and magnetic moments of 1μ(B.).  相似文献   

3.
The geometries, stabilities, electronic properties, and magnetism of FeB(n) clusters up to n=10 are systematically studied with density functional theory. We find that our optimized structures of FeB(2), FeB(3), FeB(4), and FeB(5) clusters are more stable than those proposed in previous literature. The results show that it is favorable for the Fe atom to locate at the surface, not at the center of the cluster, and that FeB(4) and FeB(9) clusters exhibit high stability. For all the FeB(n) clusters studied, we find the charge transfer from Fe to B site and the coexistence of ionic and covalent bonding characteristics. The computed total magnetic moments of the lowest-energy structures oscillate with the cluster size and are quenched at n=4, 6, 8, and 10.  相似文献   

4.
A systematically varied series of tetrahedral clusters involving ligand and core metal variation has been examined using crystallography, Raman spectroscopy, cyclic voltammetry, UV-vis-NIR and IR spectroelectrochemistry, and approximate density functional theory, to assess cluster rearrangement to accommodate steric crowding, the utility of metal-metal stretching vibrations in mixed-metal cluster characterization, and the possibility of tuning cluster electronic structure by systematic modification of composition, and to identify cluster species resultant upon electrochemical oxidation or reduction. The 60-electron tetrahedral clusters MIr(3)(CO)(11-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (5), C(5)HMe(4) (6), C(5)Me(5) (7); M = W, Cp = C(5)H(4)Me, x = 1 (13), x = 2 (14)] and M(2)Ir(2)(CO)(10-x)(PMe(3))(x)(eta(5)-Cp) [M = Mo, x = 0, Cp = C(5)H(4)Me (8), C(5)HMe(4) (9), C(5)Me(5) (10); M = W, Cp = C(5)H(4)Me, x = 1 (15), x = 2 (16)] have been prepared. Structural studies of 7, 10, and 13 have been undertaken; these clusters are among the most sterically encumbered, compensating by core bond lengthening and unsymmetrical carbonyl dispositions (semi-bridging, semi-face-capping). Raman spectra for 5, 8, WIr(3)(CO)(11)(eta(5)-C(5)H(4)Me) (11), and W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(4)Me)(2) (12), together with the spectrum of Ir(4)(CO)(12), have been obtained, the first Raman spectra for mixed-metal clusters. Minimal mode-mixing permits correlation between A(1) frequencies and cluster core bond strength, frequencies for the A(1) breathing mode decreasing on progressive group 6 metal incorporation, and consistent with the trend in metal-metal distances [Ir-Ir < M-Ir < M-M]. Cyclic voltammetric scans for 5-15, MoIr(3)(CO)(11)(eta(5)-C(5)H(5)) (1), and Mo(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (3) have been collected. The [MIr(3)] clusters show irreversible one-electron reduction at potentials which become negative on cyclopentadienyl alkyl introduction, replacement of molybdenum by tungsten, and replacement of carbonyl by phosphine. These clusters show two irreversible one-electron oxidation processes, the easier of which tracks with the above structural modifications; a third irreversible oxidation process is accessible for the bis-phosphine cluster 14. The [M(2)Ir(2)] clusters show irreversible two-electron reduction processes; the tungsten-containing clusters and phosphine-containing clusters are again more difficult to reduce than their molybdenum-containing or carbonyl-containing analogues. These clusters show two one-electron oxidation processes, the easier of which is reversible/quasi-reversible, and the more difficult of which is irreversible; the former occur at potentials which increase on cyclopentadienyl alkyl removal, replacement of tungsten by molybdenum, and replacement of phosphine by carbonyl. The reversible one-electron oxidation of 12 has been probed by UV-vis-NIR and IR spectroelectrochemistry. The former reveals that 12(+) has a low-energy band at 8000 cm(-1), a spectrally transparent region for 12, and the latter reveals that 12(+) exists in solution with an all-terminal carbonyl geometry, in contrast to 12 for which an isomer with bridging carbonyls is apparent in solution. Approximate density functional calculations (including ZORA scalar relativistic corrections) have been undertaken on the various charge states of W(2)Ir(2)(CO)(10)(eta(5)-C(5)H(5))(2) (4). The calculations suggest that two-electron reduction is accompanied by W-W cleavage, whereas one-electron oxidation proceeds with retention of the tetrahedral core geometry. The calculations also suggest that the low-energy NIR band of 12(+) arises from a sigma(W-W) --> sigma*(W-W) transition.  相似文献   

5.
The structural, electronic, and magnetic properties of cobalt-benzene complexes (Co(n)Bz(m), n, m = 1-4, m = n, n + 1) have been explored within the framework of an all electron gradient-corrected density functional theory. Sandwich conformations are energetically preferred for the smallest series of n, m = 1-2, rice-ball structures are for larger sizes with n > or = 3, and both motifs coexist for Co(2)Bz(3). The rice-ball clusters of (3, 3) and (4, 4) are more stable than (3, 4) having a relative large binding energy and HOMO-LUMO gap whereas smaller sandwich clusters have highly kinetic stability at (n, n + 1). The computed ionization potentials and magnetic moments of Co(n)Bz(m) are in good agreement with the measured values overall; the present results suggest that the measured moments are averages reflecting mixtures of a few nearly isoenergetic isomers having different spin states. The magnetism of the complexes mainly comes from Co atoms with a Bz molecule only possessing very small moments. Ferromagnetic ordering is energetically preferred for smaller complexes with n = 1-3 whereas antiferromagnetic ordering is favored for (4, 4). The relatively smaller moments of Con clusters in a Bz matrix indicate that Bz molecules play an attenuation role to the magnetism of the complexes.  相似文献   

6.
We investigate the structures and magnetic properties of small Mn(n) clusters in the size range of 2-13 atoms using first-principles density functional theory. We arrive at the lowest energy structures for clusters in this size range by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. The results for the net magnetic moments for the optimal clusters are in good agreement with experiment. The magnetic behavior of Mn(n) clusters in the size range studied in this work ranges from ferromagnetic ordering (large net cluster moment) for the smallest (n=2, 3, and 4) clusters to a near degeneracy between ferromagnetic and antiferromagnetic solutions in the vicinity of n=5 and 6 to a clear preference for antiferromagnetic (small net cluster moment) ordering at n=7 and beyond. We study the details of this evolution and present a picture in which bonding in these clusters predominantly occurs due to a transfer of electrons from antibonding 4s levels to minority 3d levels.  相似文献   

7.
Density-functional theory with scalar-relativistic pseudopotential and a generalized gradient correction is used to calculate the neutral and cationic Bi(n) clusters (2< or =n< or =24), with the aim to elucidate their structural evolution, relative stability, and magnetic property. The structures of neutral Bi clusters are found to be similar to that of other group-V elemental clusters, with the extensively studied sizes of n=4 and 8 having a tetrahedron and wedgelike structure, respectively. Generally, larger Bi clusters consist of a combination of several stable units of Bi(4), Bi(6), and Bi(8), and they have a tendency to form an amorphous structure with the increase of cluster sizes. The curves of second order energy difference exhibit strong odd-even alternations for both neutral and cationic Bi clusters, indicating that even-atom (odd-atom) sizes are relatively stable in neutral clusters (cationic clusters). The calculated magnetic moments are 1micro (B) for odd-atom clusters and zero for even-atom clusters. We propose that the difference in magnetism between experiment and theory can be greatly improved by considering the orbital contribution. The calculated fragmentation behavior agrees well with the experiment, and for each cationic cluster the dissociation into Bi(4) or Bi(7) (+) subclusters confirms the special stability of Bi(4) and Bi(7) (+). Moreover, the bond orders and the gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital show that small Bi clusters would prefer semiconductor characters to metallicity.  相似文献   

8.
采用密度泛函理论中的广义梯度近似对FMBen(FM=Fe,Co,Ni;n=1-12)团簇的几何构型进行优化,并对能量、频率和磁性进行了计算,同时考虑了电子的自旋多重度.结果表明,纯铍团簇的幻数是由电子的壳层模型确定,而FMBen团簇的幻数主要由几何效应来解释;掺杂铁磁性的过渡金属(Fe,Co,Ni)提高了纯团簇的稳定性.二阶能量差分表明FMBen(FM=Fe,Co,Ni)的幻数分别为5,10;5,10;4,10.通过对磁性质的研究发现掺杂不同的过渡金属时,磁矩出现了不同的变化规律.  相似文献   

9.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

10.
The geometries, stabilities, and electronic and magnetic properties of small-sized Zr(n) (n=2-8) clusters with different spin configurations were systematically investigated by using density functional approach. Emphasis is placed on studies that focus on the total energies, equilibrium geometries, growth-pattern behaviors, fragmentation energies, and magnetic characteristics of zirconium clusters. The optimized geometries show that the large-sized low-lying Zr(n) (n=5-8) clusters become three-dimensional structures. Particularly, the relative stabilities of Zr(n) clusters in terms of the calculated fragmentation energies and second-order difference of energies are discussed, exhibiting that the magic numbers of stabilities are n=2, 5, and 7 and that the pentagonal bipyramidal D(5h) Zr(7) geometry is the most stable isomer and a nonmagnetic ground state. Furthermore, the investigated magnetic moments confirm that the atomic averaged magnetic moments of the Zr(n) (n not equal to 2) display an odd-even oscillation features and the tetrahedron C(s) Zr(4) structure has the biggest atomic averaged magnetic moment of 1.5 mu(B)/at. In addition, the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital gaps indicate that the Zr(n) (n=2 and 7) clusters have dramatically enhanced chemical stabilities.  相似文献   

11.
Multilayer lanthanide-cyclooctatetraene organometallic clusters, Lnn(C8H8)m (Ln = Eu, Tb, Ho, Tm; n = 1-7; m = n - 1, n, n + 1) were produced by a laser vaporization synthesis method. The magnetic deflections of these organometallic sandwich clusters were measured by a molecular beam magnetic deflection technique. Most of the sandwich species displayed one-sided deflection, while some of smaller Ln-C8H8 clusters showed symmetric broadening without or with only very small (or absent) net high-field deflection. In general, the total magnetic moments, calculated from the magnitude of the beams deflections, increase with the number of lanthanide atoms (i.e., with increasing sandwich layers); however for Tb-, Ho-, and Tm-C8H8 clusters with n > 3, the suppression of the magnetic moments was observed, possibly through antiferromagnetic interactions. For Eu-C8H8 clusters, we observe a linear increase of the magnetic moments with the number of Eu atoms up to n = 7, with average magnetic moment per Eu atom around 7 muB--similar to that displayed by conventionally synthesized mononuclear EuIIC8H8 complexes, indicating that Eu atoms exist as Eu2+ ions in the full sandwich Eun(C8H8)n+1 clusters. These results suggest that Eun(C8H8)n+1 is a promising candidate for a high-spin, one-dimensional building block in organometallic magnetic materials.  相似文献   

12.
A systematic study of bimetallic Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters is performed by using density functional theory at the B3LYP level. The geometric structures, relative stabilities, HOMO-LUMO gaps, natural charges and electronic magnetic moments of these clusters are investigated, and compared with pure gold clusters. The results indicate that the properties of Au(n)M(2) clusters for n = 1-3 diverge more from pure gold clusters, while those for n = 4-6 show good agreement with Au(n) clusters. The dissociation energies, the second-order difference of energies, and HOMO-LUMO energy gaps, exhibiting an odd-even alternation, indicate that the Au(4)M(2) clusters are the most stable structures for Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters. Moreover, we predict that the average atomic binding energies of these clusters should tend to a limit in the range 1.56-2.00 eV.  相似文献   

13.
Ground state, growth, and electronic properties of small lanthanum clusters   总被引:1,自引:0,他引:1  
The DMol cluster method based on density-functional theory has been employed to study the structural stability and electronic structure of La(n) (n=2-14) clusters. The ground states have been found out for lanthanum clusters. The Jahn-Teller effect plays an important role in this process because there are many isomers near the ground state. The magnetism is not sensitive to interatomic spacing when the change of interatomic spacing is in a small range. Lanthanum clusters grow in an icosahedral pattern. The results of the mean binding energy, of the second derivative of binding energy, and of the formation energy show strong odd-even alternation and that 7- and 13-atom clusters are magic. Further, the HOMO-LUMO gap, the mean nearest bond lengths, and the mean magnetic moments suggest that the convergence to bulk is slow and it shows an oscillatory behavior for small lanthanum clusters.  相似文献   

14.
The adsorption properties of a single CO molecule on Sc(n) (n=2-13) clusters are studied by means of a density functional theory with the generalized gradient approximation. Two adsorption patterns are identified. Pattern a (n=3, 4, 6, 8, 11, and 12), CO binds to hollow site while Pattern b (n=5, 7, 9, 10, and 13), CO binds to bridge site accompanied by significantly lengthening of the Sc-Sc bond. The adsorption energy exhibits clear size-dependent variation and odd-even oscillation for n<10 and reach the peak at n=5, 7, and 9, implying their high chemical reactivity. Similar variations are noted in C-O bond length, vibrational frequency, and charge transferred between CO and the clusters. This can be understood in light of the adsorption pattern, the atomic motif, and the relative stability of the bare Sc clusters. Compared with the free Sc clusters, the magnetic nature remains upon adsorption except n=2, 4, 12, and 13. Particularly, the moments of n=13 reduce significantly from 19 to 5 micro(B), implying the adsorption plays an attenuation influence on the magnetism of the cluster.  相似文献   

15.
采用密度泛函理论中的广义梯度近似对FMBen(FM=Fe, Co, Ni; n=1-12)团簇的几何构型进行优化, 并对能量、频率和磁性进行了计算, 同时考虑了电子的自旋多重度. 结果表明, 纯铍团簇的幻数是由电子的壳层模型确定, 而FMBen团簇的幻数主要由几何效应来解释; 掺杂铁磁性的过渡金属(Fe, Co, Ni)提高了纯团簇的稳定性. 二阶能量差分表明FMBen(FM=Fe, Co, Ni)的幻数分别为5, 10; 5, 10; 4, 10. 通过对磁性质的研究发现掺杂不同的过渡金属时, 磁矩出现了不同的变化规律.  相似文献   

16.
A molecular beam of multilayer metal-benzene organometallic clusters Mn(C6H6)m (M = Al, Sc, Ti, and V) was produced by a laser vaporization synthesis method, and their magnetic deflections were measured. Multidecker sandwich clusters of transition-metal atoms and benzene Scn(C6H6)n+1 (n = 1, 2) and Vn(C6H6)n+1 (n = 1-4) possess magnetic moments that increase monotonously with n. The magnetic moments of Al(C6H6), Scn(C6H6)n+1, and Vn(C6H6)n+1 are smaller than that of their spin-only values as a result of intracluster spin relaxation, an effect that depends on the orbital angular momenta and bonding characters of the orbitals containing electron spin. While Ti(C6H6)2 was found to be nonmagnetic, Tin(C6H6)n+1 (n = 2, 3) possess nonzero magnetic moments. The mechanism of ferromagnetic spin ordering in M2(C6H6)3 (M = Sc, Ti, V) is discussed qualitatively in terms of molecular orbital analysis. These sandwich species represent a new class of one-dimensional molecular magnets in which the transition-metal atoms are formally zerovalent.  相似文献   

17.
Ab initio density functional calculations including spin-orbit coupling (SOC) have been performed for Pt(n), n = 2-6 clusters. The strong SOC tends to stabilize planar structures for n = 2-5, whereas for clusters consisting of six atoms, three-dimensional structures remain preferred. SOC leads to the formation of large orbital magnetic moments and to a mixing of different spin states. Due to the spin-mixing the total magnetic moment may be larger or smaller than the spin moment in the absence of SOC. Both spin and orbital moments are found to be anisotropic. Because of the strong SOC the energy differences between coexisting magnetic isomers can be comparable to or even smaller than their magnetic anisotropy energies. In this case the lowest barrier for magnetization reversal can be determined by a magnetic isomer which is different from the ground state configuration.  相似文献   

18.
Phosphorus nitride clusters generated during Laser Desorption Ionization (LDI) and Matrix-Assisted Laser Desorption Ionization (MALDI) of solid P(3) N(5) were analyzed via Time-of-Flight Mass Spectrometry (TOF MS). The LDI TOF mass spectra show the formation of series of clusters: P(m)N(n)(+) {(m=1; n=8-11), (m=4; n=3-4), (m=5; n=1-5), (m=6; n=1-3, 5-8), (m=2-7; n=1), (m=5-10; n=2), (m=4-6; n=3), (m=4,5; n=4), (m=5,6; n=5)}, and P(m)N(n)(-) (m=4,5; n=1). Using 3-hydroxypicolinic acid (HPA) as a matrix the P(m)N(n)(+) species (m=1-4, 6, 8) with a high nitrogen content (n=4, 5, 8, 10-12, 20) were identified. The formation of a N(6)(-) cluster was also detected using a C(60) matrix. Under various conditions singly charged P(m)(+) (m=2-7, 9, 13), P(m)(-) (m=3-11, 13, 15, 17), N(n)(+) (n=5, 9, 10, 12, 13), and N(n)(-) (n=6, 10-15) clusters were identified in the mass spectra. Such high nitrogen content clusters (up to N(15)(-)) generated by laser desorption from a solid material are described for the first time. The stoichiometry of the P(m)N(n) clusters was determined via isotopic envelope analysis and computer modelling. The composition of the clusters with respect to the crystalline structure of α-P(3)N(5) is discussed.  相似文献   

19.
Simulated annealing Monte Carlo conformer searches using the "mag-walking" algorithm are employed to locate the global minima of molecular clusters of ammonium chloride of the types (NH(4)Cl)(n), (NH(4)(+))(NH(4)Cl)(n), and (Cl(-))(NH(4)Cl)(n) with n = 1-13. The M06-2X density functional theory method is used to refine and predict the structures, energies, and thermodynamic properties of the neutral, cation, and anion clusters. For selected small clusters, the resulting structures are compared to those obtained from a variety of models and basis sets, including RI-MP2 and B3LYP calculations. M06-2X calculations predict enhanced stability of the (NH(4)(+))(NH(4)Cl)(n) clusters when n = 3, 6, 8, and 13. This prediction corresponds favorably to anomalies previously observed in thermospray mass spectroscopy experiments. The (NH(4)Cl)(n) clusters show alternations in stability between even and odd values of n. Clusters of the type (Cl(-))(NH(4)Cl)(n) display a magic number distribution different from that of the cation clusters, with enhanced stability predicted for n = 2, 6, and 11. None of the observed cluster structures resemble the room-temperature CsCl structure of NH(4)Cl(s), which is consistent with previous work. Numerous clusters have structures reminiscent of the higher-temperature, rock-salt phase of the solid ammonium halides.  相似文献   

20.
The structural stability and electronic-structure of icosahedral La(13), La(-1) (13), and La(+1) (13) clusters have been studied by DMOL cluster method based on density-functional theory. The ground state of all-electron with relativity results is shown to be a distorted D(2h) icosahedron by the Jahn-Teller effect. However, the binding energies of D(3d) and D(5d) are very close to that of the D(2h) structure for La(13), La(-1) (13), and La(+1) (13) clusters. The effective core potential results show that the true ground state is D(5d) structure. The clusters have small magnetic moments and the symmetry of cluster is an important factor in determining the magnetic moments of the clusters. The effects of interatomic spacing and coordination on atomic magnetic moment are discussed. Further, 5d electrons dominate the hybrid orbitals below the Fermi level in the neutral cluster and contribute the main spin of clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号