首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Recently, stricter diesel particulate emission standards have been set in many countries. As for the after-treatment of exhaust gas, a diesel filter has been developed to trap diesel particles inside small-scale porous structure. Since measurement of flow in the filter is impossible, the phenomena of particle deposition in the filter are not well understood. In this study, we conducted Lattice Boltzmann simulation on flow in the newly developed diesel filter. The soot deposition was included to consider the particle trap in the filter. The inner structure of the diesel filter as well as trapped soot region was scanned by an X-ray CT technique. Results show that the flow pattern is largely changed when the soot is attached to the filter surface. By comparing simulation results with CT images, soot accumulation region is well predicted. It is found that the amount of trapped soot is proportional to the filter back-pressure even when soot deposition probability is changed.  相似文献   

4.
We have simulated the flow in a real cordierite DPF using the lattice Boltzmann method. Inner structure of the filter is analyzed by a 3D X-ray CT technique. Two processes of soot deposition for PM trap and soot combustion for filter regeneration process are considered. Especially, the effect of NO2 on the soot oxidation is examined, which is recently proposed as on-board regeneration system. The reaction rate has been determined based on previous experimental data. The estimated values of Arrhenius factor and activation energy are A = 146 1/s, E = 79.5 kJ/mol with NO2, and A = 1.20 1/s, E = 64.9 kJ/mol without NO2. Results show that, the flow field and pressure change inside the filter are clearly visualized. The pressure distribution depends on the non-uniformity of pore structure. The flow is largely changed with soot deposition, with higher pressure drop across the filter (filter back-pressure). The obtained correlation between total accumulated soot and the filter back-pressure is well in accordance with reported experimental results. In combustion simulation, the effect of NO2 addition to promote the soot oxidation is confirmed. These are useful information to develop the future regenerating DPF system.  相似文献   

5.
本文利用X射线谱研究了吡嗪(C4H4N2)分子共价吸附于硅(100)面的几种吸附构型的几何结构和电子结构. 利用密度泛函理论结合团簇模型,对预测的吸附结构的碳K壳层(1s)X射线光电子能谱(XPS)和近边X射线吸收精细结构(NEXAFS)谱进行了模拟. 计算结果阐明了XPS和NEXAFS谱与不同吸附构型的对应关系. 与XPS谱相比,NEXAFS谱对所研究的吡嗪/硅(100)体系的结构有明显的依赖性,可以很好地用于结构鉴定. 根据碳原子的分类,研究了在NEXAFS光谱中不同化学环境下碳原子的光谱成分.  相似文献   

6.
This study shows how soot particles inside the cylinder of the engine are reduced due to high pressure fuel injection used in a light-duty single-cylinder optical diesel engine fuelled with methyl decanoate, a selected surrogate fuel for the diagnostics. For various injection pressures, planar laser induced incandescence (PLII) imaging and planar laser-induced fluorescence of hydroxyl (OH-PLIF) imaging were performed to understand the temporal and spatial development of soot and high-temperature flames. In addition, a thermophoresis-based particle sampling technique was used to obtain transmission electron microscope (TEM) images of soot aggregates and primary particles for detailed morphology analysis. The OH-PLIF images suggest that an increase in the injection pressure leads to wider distribution of high-temperature flames likely due to better mixing. The enhanced high-temperature reaction can promote soot formation evidenced by both a faster increase of LII signals and larger soot aggregates on the TEM images. However, the increased OH radicals at higher injection pressure accelerates the soot oxidation as shown in a higher decreasing rate of LII signals as well as dramatic reduction of the sampled soot aggregates at later crank angles. The analysis of nanoscale carbon layer fringe structures also shows a consistent trend that, at higher injection pressure, the soot particles are more oxidized to form more graphitic carbon layer structures. Therefore, it is concluded that the in-cylinder soot reduction at higher injection pressure conditions is due to enhanced soot oxidation despite increased soot formation.  相似文献   

7.
Investigation of soot and ash particulate matter deposited in diesel particulate filters (DPFs) operating with biofuel (B100) and diesel (pure diesel: B0 and diesel80/biofuel20 blend: B20) by means of optical microscopy, scanning electron microscopy, and high resolution transmission electron microscopy (HRTEM) reveals the following: the rapeseed methyl ester biofuel used for this study contributes to ash production, mainly of Ca?CS?C and P-bearing compounds ranging in size between 50 and 300?nm. Smaller ash particles are less common and build aggregates. Ash is deposited on the inlet DPF surface, the inlet channel walls, and in B100-DPF at the plugged ends of inlet channels. The presence of Fe?CCr?CNi fragments, down to tens of nanometers in size within the ash is attributed to engine wear. Pt particles (50?C400?nm large) within the ash indicate that the diesel oxidation catalyst (DOC) upstream of the DPF shows aging effects. Radial cracks on the coating layer of the DOC confirm this assumption. The B100-DPF contains significantly less soot than B20 and B0. Based on the generally accepted view that soot reactivity correlates with the nanostructure of its primary particles, the length and curvature of graphene sheets from biofuel- and diesel-derived soot were measured and computed on the basis of HRTEM images. The results show that biofuel-derived soot can be more easily oxidized than diesel soot, not only during early formation but also during and after considerable particle growth. Differences in the graphene sheet separation distance, degree of crystalline order and size of primary soot particles between the two fuel types are in line with this inference.  相似文献   

8.
In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.  相似文献   

9.
随机分布烟尘团簇粒子辐射特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
类成新  吴振森 《物理学报》2010,59(8):5692-5699
基于分形理论,采用蒙特卡罗方法对随机分布的烟尘团簇粒子结构进行了仿真模拟,利用离散偶极子近似(discrete dipole approximation, DDA)方法研究了随机分布的烟尘团簇粒子的辐射特性,分析讨论了分形维数、原始微粒粒径和数量以及复折射率对随机分布烟尘团簇粒子辐射特性的影响.研究表明,在给定分形维数的情况下,烟尘团簇粒子的辐射特性取决于原始微粒粒径、数量及复折射率;原始微粒较小的团簇粒子,当分形维数较小时,吸收截面变化不明显,但当分形维数大于2时,吸收截面骤然增大,然而,对于具有比较大的原始微粒粒径、数量及复折射率的烟尘团簇粒子,吸收截面随着分形维数的增大而单调递减;随着分形维数的增大,团簇粒子的散射截面、消光截面及单次散射反照率均单调递增;从整体上来讲,团簇粒子的辐射特性与等效球形粒子的辐射特性存在着比较大的差别,并且这种差别随着分形维数的增大而减小.该工作对研究气溶胶粒子的辐射及气候效应具有重要的科学价值. 关键词: 烟尘团簇粒子 辐射特性 离散偶极子近似方法  相似文献   

10.
The adsorption of the nucleobase adenine on surfaces of the minerals iron pyrite and silica has been studied by photoemission and soft X-ray photoabsorption spectroscopy. Pyrite samples were prepared by fracture under nitrogen followed by transfer to ultrahigh vacuum, or by cleavage in vacuum. By comparing data with multilayer spectra, adenine was found to chemisorb on pyrite, with small changes in the valence band spectrum, and stronger changes in the NEXAFS spectrum. The molecules were bonded with the molecular plane at a steep angle to the surface plane. On silica the molecule was found to adsorb at a reduced angle to the surface. The C and N 1s photoemission spectra on this surface suggest chemisorption, although the nitrogen NEXAFS spectra are similar to multilayer spectra.  相似文献   

11.
Post injection has significant benefit in the reduction of diesel soot emissions. Therefore, there is a need to understand the effect of post-injection strategy on soot physicochemical properties and reactivity because they play an important role in soot oxidation process that governs the final soot emissions. This work focuses on the impact of post injection on the physicochemical properties and reactivity of diesel in-cylinder soot using a main plus post injection (M*P) and a single injection (M) strategy. The soot was sampled by a developed total cylinder sampling system, and the dividing points of soot formation-dominant and oxidation-dominant phases were used for studying the impacts of post injection on the characteristics of in-cylinder soot. The physicochemical properties of the soot samples, including primary particle size, nanostructure, carbon chemical state and surface functional groups, were characterized. The soot reactivity was evaluated in terms of peak temperature, burnout temperature and apparent activation energy. In the oxidation-dominant phase, the M*P soot initially possesses smaller primary particle size, shorter fringe length, larger tortuosity, lower sp2/sp3 hybridization ratio of carbon atoms and higher content of aliphatic CH groups than the M soot. The beneficial influence of physicochemical properties on soot reactivity when using post injection is validated by the thermogravimetric data, which shows that the M*P soot is more reactive than the M soot at the onset of the oxidation-dominant phase. In the M*P case, the soot generated from the main-injection combustion has lower reactivity than the soot from the post-injection combustion after they experience the soot formation-dominant phase. The results indicate that the use of post injection leads to in-cylinder soot with physicochemical properties that favor reactivity. The enhancement of reactivity means that the soot will be more readily oxidized in the subsequent combustion process, and consequently contributes to a reduction in final soot emissions.  相似文献   

12.
Scattering and propagation of a UV pulse in soot aerosols are studied using generalized multi-sphere Mie theory (GMM) and a two-frequency mutual coherence function. Soot aerosols are obtained by the diffusion-limited aggregation (DLA) model. Scattering characteristics of aggregate structures in soot aerosols are analyzed by GMM theory in detail. Scattering intensities versus scattering angles are given and discussed. The effects of different-positions of the aggregate on the scattering intensities, scattering cross section, extinction cross section, absorption cross section and asymmetry factor are computed and compared. The two-frequency mutual coherence functions of UV pulses in soot aerosols are simulated, and the effects of optical distance, frequency difference are analyzed.  相似文献   

13.
The objective of this paper is to develop a soot model for multi-dimensional simulations of diesel–methanol dual-fuel engines to predict engine-out soot emissions. To the two-step soot model a special term, based on experimental study and analysis, is appended to the soot formation rate to account for the effect of methanol. The results of engine-out soot emissions predicted by the models were compared with experimental data and it is shown that the existing model predicts well for diesel engines, whereas the proposed model predicts well for both diesel and dual-fuel engines especially for the large fractional methanol flow rates. The results suggest that the soot model must be modified for the dual-fuel combustion mode.  相似文献   

14.
为了研究汽车尾气颗粒物的结构和氮的种态,使用扫描透射X射线显微成像(STXM)技术研究了桑塔纳3000和高尔汽车尾气颗粒物.STXM表明单颗粒物的粒径为500nm,颗粒物质量分布不均匀,有中间空洞.比较汽车尾气颗粒物和(NH4)2SO4和NaNO3中N的1sX射线近边吸收精细结构谱(NEXAFS),铵盐在406eV有显著的σ*吸收峰,有肩部结构;汽车尾气颗粒物和NaNO3中N的近边吸收谱在412eV和418.5eV有明显的σ吸收峰;(NH4)2SO4中N的近边吸收谱在413.5eV和421.8eV更宽的σ吸收峰.硝酸盐是汽车尾气颗粒物中的N化学种态的主要存在形式.在395—418eV能量范围内对桑塔纳3000汽车尾气颗粒物进行堆栈扫描,经过主成分分析和聚类分析,发现其表层主要为硝酸盐,内部有少量铵盐.  相似文献   

15.
The objective of the present study was to understand how the lubricant-derived ash-loaded diesel particulate filter (DPF) impacted the soot oxidation reactivity during the regeneration process. Four major commercial lubricant additives (i.e. Ca, Zn-P, Ca-Zn-P, and Mo-P) were heated up in a muffle furnace to generate ash particles, which were mixed with diesel soot in a loose-contact pattern for further analysis. Thermogravimetric analysis (TGA) was employed for both non-isothermal and isothermal conditions to examine the oxidation reaction parameters, including ignition temperature, peak temperature and burnout temperature. In the meantime, the sizes and nanostructures of the primary soot particles during the oxidation process were characterized by high-resolution transmission electron microscopy (HRTEM). Results showed that lubricant-derived ashes accelerated the oxidation of soot particles as indicated by the reduced oxidation characteristic temperatures and increased oxidation rate. Based on the analysis of HRTEM images, both surface and internal burning phenomena existed in the oxidation processes of pure soot conditions and soot-ash mixtures conditions. The structures of shell-core, onion- and capsule-like, hollow and carbonization fragments appeared sequentially through the entire oxidation processes. Comparing to the pure soot conditions, the tendency of surface burning of the soot particles was notably increased by the lubricant-derived ashes. It was thus concluded that, the lubricant-derived ash components played the role as catalyst to promote soot oxidation and favor the whole regeneration process, even though the ashes may deteriorate performance of DPF by increased backpressures.  相似文献   

16.
This study shows how the structure of soot particles within the flame changes due to the relative direction of the swirl flow in a small-bore diesel engine in which significant flame–wall interactions cause about half of the flame travelling against the swirl flow while the other half penetrating in the same direction. The thermophoresis-based particle sampling method was used to collect soot from three different in-flame locations including the flame–wall impingement point near the jet axis and the two 60° off-axis locations on the up-swirl and down-swirl side of the wall-interacting jet. The sampled soot particle images were obtained using transmission electron microscopes and the image post-processing was conducted for statistical analysis of size distribution of soot primary particles and aggregates, fractal dimension, and sub-nanoscale parameters such as the carbon layer fringe length, tortuosity, and spacing. The results show that the jet-wall impingement region is dominated by many small immature particles with amorphous internal structure, which is very different to large, fractal-like soot aggregates sampled from 60° downstream location on the down-swirl side. This structure variation suggests that the small immature particles underwent surface growth, coagulation and aggregation as they travelled along the piston-bowl wall. During this soot growth, the particle internal structure exhibits the transformation from amorphous carbon segments to a typical core–shell structure. Compared to those on the down-swirl side, the soot particles sampled on the up-swirl side show much lower number counts and more compact aggregates composed of highly concentrated primary particles. This soot aggregate structure, together with much narrower carbon layer gap, indicates higher level of soot oxidation on the up-swirl side of the jet.  相似文献   

17.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

18.
Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. The surface structure of the surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers.  相似文献   

19.
It is increasingly recognized that soot particles play an important role in the radiative heat transfer from flames and smoke. After their formation, these minute particles usually conglomerate into different forms, with the limiting shapes being the spheres and long chains which can be modeled as infinite cylinders. The present work analyzes the effect of soot shape on soot radiation. The spectral extinction coefficient of spheres, being lower than that of the cylindrical particles, falls off rapidly in the near i.r. The shape effect on soot radiation is found to be more pronounced at low temperatures than at high temperatures. In flame radiation calculations the radiative contribution of the various conglomerated soot shapes can be properly accounted for by assuming spherical and polydisperse soot particles. Based on the extinction characteristics of the particles, an experimental method for determining the amount of spherical and cylindrical particles in a soot cloud is suggested.  相似文献   

20.
Adsorption behavior of atomic deuterium on a hexagonal boron nitride (h-BN) thin film is studied by photon-stimulated ion desorption (PSID) of D+ and near edge X-ray absorption fine structure (NEXAFS) at the B and N K-edges. After the adsorption of atomic deuterium, D+ desorption yield η() shows clear enhancement at the B K-edge and almost no enhancement at the N K-edge. NEXAFS spectra show a large change in the B K-edge and a small change in the N K-edge after the adsorption. We propose selective adsorption of atomic deuterium on the h-BN thin film based on the experimental results, and mention the effectiveness of applying the PSID method with X-ray to study hydrogen storage materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号