首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从仿生学角度出发,将自制的人工角膜支架材料羟基磷灰石/聚乙烯醇/壳聚糖(n-HA/PVA/CS)浸泡在模拟体液中,对材料的含水率及力学性能进行了测试,并利用扫描电镜、X射线衍射仪、电感耦合等离子体原子发射光谱仪及热重分析仪研究了材料在模拟体液中的形貌、晶体结构、元素组成及热稳定性.结果表明,在模拟体液中,n-HA/PVA/CS复合水凝胶的含水率为80%~86%,具有较高的拉伸强度,能承受正常眼压,且热稳定性较好.在浸泡后期,n-HA/CS/PVA复合材料对Ca2+的吸附和释放达到动态平衡;而其表面含有微量的纳米羟基磷灰石沉积,有利于纤维细胞的长入.  相似文献   

2.
Repairs of bone defects caused by osteoporosis have always relied on bone tissue engineering. However, the preparation of composite tissue engineering scaffolds with a three-dimensional (3D) macroporous structure poses huge challenges in achieving osteoconduction and osteoinduction for repairing bone defects caused by osteoporosis. In the current study, a three-dimensional macroporous (150–300 μm) reduced graphene oxide/polypyrrole composite scaffold modified by strontium (Sr) (3D rGO/PPY/Sr) was successfully prepared using the oxygen plasma technology-assisted method, which is simple, safe, and inexpensive. The findings of the MTT assay and AO/EB fluorescence double staining showed that 3D rGO/PPY/Sr has a good biocompatibility and effectively promoted MC3T3-E1 cell proliferation. Furthermore, the ALP assay and alizarin red staining showed that 3D rGO/PPY/Sr increased the expression levels of ALP activity and the formation of calcified nodules. The desirable biocompatibility, osteoconduction, and osteoinduction abilities, assure that the 3D macroporous rGO/PPY/Sr composite scaffold offers promising potential for use in the repair of bone defects caused by osteoporosis in bone tissue engineering.  相似文献   

3.
Bone tissue engineering scaffolds necessities appropriate physicochemical and mechanical properties to support its renewal. Electrospun scaffolds have been used unequivocally in bone tissue restoration. The main intention of this research is to develop electrospun polyurethane (PU) scaffold decorated with metallic particles and essential oil with advanced properties to make them as a putative candidate. The nanocomposite scaffold exhibited appropriate wettability and suitable fiber diameter compared to the polyurethane scaffold. Interaction of the added constituents with the polyurethane was corroborated through hydrogen bonding formation. Tensile strength of the composites was enhanced compared to the polyurethane scaffold. Thermal analysis depicted the lower weight loss of the composite scaffold than the pristine PU. Blood coagulation was significantly delayed and also the composite surface rendered safe interaction with red blood cells. In vitro toxicity testing using fibroblast cells portrayed the nontoxic behavior of the fabricated material. The above-said advanced properties of the composite scaffold can be warranted for bone tissue engineering application.  相似文献   

4.
人体骨骼的晶体成分主要是纳米羟基磷灰石(n-HA),n-HA具有优良的生物相容性、骨传导性和骨结合能力,被广泛应用于硬组织修复材料中。本文综述了纳米羟基磷灰石在构建人体骨修复支架材料、骨替代材料和口腔医用材料方面的应用研究。  相似文献   

5.
In this work, nano-structured scaffolds were designed for tissue engineering using collagen, hyaluronic acid (HA) and nano-bioactive glass (NBAG) as their main components. The scaffold was prepared via freeze-drying method and the properties including morphology, porosity, compressive strength, swelling ratio and cytotoxicity in-vitro, were also evaluated. The composite scaffolds showed well interconnected macropores with the pore size of ranging from 100 to 500 μm. The porosity percent and swelling ability were decreased with the introduction of NBAG into the collagen/HA hydrogel; however, the compressive strength was enhanced. The cytotoxicity in-vitro study shows that the collagen-HA/NBAG scaffolds have good biocompatibility with improving effect on fibroblastic cells growth. It could be concluded that this scaffold fulfills the main requirements to be considered as a bone substitute.  相似文献   

6.
A bone morphogenetic protein-2(BMP-2) derived synthetic oligopeptide, S [PO4]KIPKASSVPTELSAISTLYLDDD(P24), has shown great potential for facilitating bone regeneration. However, P24 cannot be directly used onto bone defects, while a continuous sustained delivery of P24 may lead to a better formation of bone tissue. Based on this issue, we have developed a sustained delivery system incorporating P24-loaded poly(lactide-co-glycolide)(PLGA) microspheres and nano-hydroxyapatite(n-HA) into the composite hydrogel. The P24-contained compound material was characterized with NMR, FTIR and SEM to demonstrate the fomiation of compound structure containing P24, PLGA and n-HA. A continuous drug release of P24 was observed for over 60 d that evidently enhanced the efficiency in promoting the proliferation of MC3T3-E1 cells and the secrete of alkaline phosphatase(ALP) in vitro. Moreover, the osteoinduction eflect of the hydrogel system with P24 peptide niicrospheres was demonstrated in vivo and manifested by the result of immunohistochemistry. This novel injectable composite hydrogel is expected to be applied to improving the bone defect treatment in bone tissue engineering.  相似文献   

7.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

8.
通过原位沉淀法和冷冻相分离技术得到含有钙磷前驱体(CaP)的初始多孔支架, 利用多孔支架表面原位生成的壳聚糖(CS)膜减缓NaOH溶液中OH-离子的渗透速率, 以达到纳米羟基磷灰石(nHA)缓慢形成的目的, 从而制得nHA 分布均匀的CS/nHA多孔复合支架. 利用扫描电镜(SEM)和万能试验机研究复合支架的结构和性能, 发现nHA为针状结构, 长度为80200 nm, 宽度为2050 nm. 随着nHA含量的增加, 复合支架的孔隙率下降, 由(93.8±3.3)%降至(87.7±3.8)%, 压缩强度则逐渐提高, 由(0.5±0.09) MPa增加至(1.5±0.06) MPa. 当复合支架中nHA质量分数为25%时, 未发现nHA团聚现象, nHA均匀地分布于CS基体中. 通过红外光谱(FTIR)、 X射线衍射(XRD)及X射线光电子能谱(XPS)等分析推断, nHA与CS之间可能存在配位和氢键作用. 细胞实验结果表明, CS/nHA多孔复合支架具有良好的生物相容性, 细胞在支架内部贴壁黏附生长. CS/nHA多孔复合支架有望在骨组织工程领域具有良好的应用前景.  相似文献   

9.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

10.
A poly(vinyl alcohol) (PVA)/hydroxyapatite (HAp) composite monolithic scaffold is prepared via thermally impacted non-solvent induced phase separation method, successively followed by an alternate soaking process. The morphology of the resulting composite monolith is observed by scanning electron microscopy (SEM). The formation of hydroxyapatite is confirmed by X-ray diffraction, SEM in combination with energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy. The effects of soaking cycle and soaking time upon the formation of hydroxyapatite on the monolith surface are systematically investigated. With the increase of soaking cycle and soaking time, the amount of the formed hydroxyapatite increases. As the soaking cycle increases, the water uptake of the composite monolith decreases. The PVA/HAp composite monolith greatly has a promising application as scaffold of bone tissue engineering.  相似文献   

11.
Scaffolds used in skin tissue engineering must mimic the native function of the extracellular matrix (ECM) and facilitate the fibroblast cell response for new tissue growth. In this study, a novel dressing scaffold based on polyurethane (PU) with sesame oil, honey, and propolis was fabricated by electrospinning. Scanning electron microscopy (SEM) images showed that the diameter of the electrospun scaffolds decreased by blending sesame oil (784?±?125.46?nm) and sesame oil/honey/propolis (576?±?133.72?nm) into the PU matrix (890?±?116.911?nm). Fourier infrared (FT-IR) and thermogravimetric (TGA) analysis demonstrated the formation of hydrogen bonds and interaction between PU and sesame oil, honey, and propolis. Contact-angle measurement indicated reduced wettability of PU/sesame oil scaffold (114?±?1.732) and improved wettability (54.33?±?1.528) in the PU/sesame oil/honey/propolis scaffold. Further, tensile tests and atomic force microscopy (AFM) analysis indicated that the fabricated composite membrane exhibited enhanced mechanical strength and reduced surface roughness compared to the pristine PU. The developed composite displayed less toxicity to the red blood cells (RBC’s) compared to the pristine PU. Cytotoxicity assay showed enhanced cell viability of HDF in electrospun scaffolds than pristine PU after 72?h culture. These enhanced properties of the developed scaffolds suggest the potential of utilizing them in skin tissue engineering.  相似文献   

12.
The thermal and crystalline behaviour of nano-hydroxyapatite (n-HA) reinforced polyamide 66 (PA66) biocomposites was studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). The thermal properties of PA66 and n-HA/PA66 composites were analysed by TG. The effect of hydroxyapatite on the melting and crystallization of PA66 was evaluated by DSC. DSC measurements exhibited an increase in the crystallization temperature, however, decrease in crystallinity with the addition of n-HA to the PA66 matrix, which was attributed to the hydrogen bonds between the n-HA surface and polyamide 66 molecules. With increase of n-HA content, the melting peak of the PA66 component shifted to higher temperature, suggesting constrained melting. The addition of n-HA to PA66 played the role of nucleating agent and enhanced the crystallization rate. Non-isothermal parameter a measured by Liu method varies from 1.13 to 1.18, from 1.02 to 1.07, and from 1.18 to 1.21 for PA66, 30 wt% n-HA/PA66 and 40 wt% n-HA/PA66, respectively, and the values of K(T) systematically increase with rise in relative degree of crystallinity.  相似文献   

13.
In this paper, a new polylactide (PLA)-based scaffold composite by biomimetic synthesis was designed. The novel composite mainly consists of nano-hydroxyapatite (n-HA), which is the main inorganic content in natural bone tissue for the PLA. The crystal degree of the n-HA in the composite is low and the crystal size is very small, which is similar to that of natural bone. The compressive strength of the composite is higher than that of the PLA scaffold. Using the osteoblast culture technique, we detected cell behaviors on the biomaterial in vitro by SEM, and the cell affinity of the composite was found to be higher than that of the PLA scaffold. The biomimetic three-dimensional porous composite can serve as a kind of excellent scaffold material for bone tissue engineering because of its microstructure and properties. Translated from Journal of Hunan University (Natural Sciences), 2006, 33(2) (in Chinese)  相似文献   

14.
Bone tissue engineering is an efficient approach to regenerating bone-related defects. The optimal scaffold used for bone tissue engineering must possess adequate porosity and suitable mechanical properties. This work described the development of a biodegradable polymeric composite based on polycaprolactone (PCL) and starch that can form a porous structure in situ. The scaffold exhibited the required mechanical properties at the initial stage of implantation by controlling in situ degradation and subsequent pore formation. PCL/starch (SPCL) scaffolds with 100/0, 70/30, and 50/50 ratios were developed. Degradation studies were performed in phosphate buffer saline (PBS) containing α-amylase or lipase at 37 °C for 4 weeks. Fourier-transform infrared spectroscopy was used to analyze chemical bonds and their changes after degradation. Differential scanning calorimetry was applied to determine the crystallinity and recrystallization of samples before and after degradation. Mass loss and starch release were observed during degradation, and the porosity of samples was measured by the ethanol replacement method. Morphology was further determined using scanning electron microscopy. Finally, variations in compressive strength and modulus during degradation and pore formation were also measured. The porosity of samples reached 45% after 1 month of degradation, and mechanical properties were still appropriate for human bone tissue. Reduction in mechanical property after mass loss, starch release and pore formation was controlled by the hydrogen bonding and recrystallization effect of PCL after degradation. Results suggested that SPCL composite had potential to form porous scaffold with adequate mechanical properties in situ and is promising for bone tissue engineering applications.  相似文献   

15.
Designing and fabricating nanocomposite scaffolds for bone regeneration from different biodegradable polymers and bioactive materials are an essential step to engineer tissues. In this study, the composite scaffold of gelatin/hyaluronic acid (Gel/HA) containing nano-bioactive glass (NBG) was prepared by using freeze-drying method. The biocompatibilities in-vitro of the Gel-HA/NBG composite scaffolds, including MTT assay, ALP activity, von Kossa staining and tetracycline staining, were investigated. The SEM observations revealed that the prepared scaffolds were porous with three-dimensional (3D) and interconnected microstructure, agglomerated NBG particles were uniformly dispersed in the matrix. MTT results indicated that the tested materials didn't show any cytotoxicity. The presence of NBG in the composite scaffold further enhanced the ALP activity in comparison with the pure Gel/HA scaffold. The von Kossa staining and tetracycline staining results also indicated that the NBG may improve the cell response. Therefore, the results indicated the nanocomposite scaffold made from Gel, HA and NBG particles could be considered as a potential bone tissue engineering implant.  相似文献   

16.
Hydroxyapatite due to its good biocompatibility and similar chemical composition to the mineral part of bone has found various applications in tissue engineering. Porous hydroxyapatite has high surface area, which leads to excellent osteoconductivity and resorbability, providing fast bone ingrowth. In this study, highly porous body of nanostructure hydroxyapatite was successfully fabricated via gelcasting method. The pure phase of hydroxyapatite was confirmed by X-ray diffraction. The result of scanning electron microscopy analysis showed that the prepared scaffold has highly interconnected spherical pores with a size in the range 100–400 μm. The crystallite size of the hydroxyapatite scaffold was measured in the range 30–42 nm. The mean values of true (total) and apparent (interconnected) porosity were calculated in the range 84–91 and 70–78%, respectively. The maximum values of compressive strength and elastic modulus of the prepared scaffold were found to be about 1.5 MPa and 167 MPa, respectively, which were achieved after sintering at 1,000 °C for 4 h. Transmission electron microscopy analysis showed that the particle sizes are smaller than 80 nm. In vitro test showed good bioactivity of the prepared scaffold. The mentioned properties could make the hydroxyapatite scaffold a good candidate for tissue engineering applications, especially applications that did not need to stand any loading.  相似文献   

17.
《中国化学快报》2023,34(2):107528
Designing a multifunctional scaffold with osteogenic and angiogenic properties holds promise for ideal bone regeneration. Innovative scaffold was here constructed by immobilizing exosomes derived from human bone mesenchymal stem cells (hBMSCs) onto porous polymer meshes which developed by PLGA and Cu-based MOF (PLGA/CuBDC@Exo). The synthesized exosome-laden scaffold capable of providing a dual cooperative controllable release of bioactive copper ions and exosomes that promote osteogenesis and angiogenesis, thereby achieving cell-free bone regeneration. In vitro assay revealed the composite stent not only substantially upregulated the expression of osteogenic-related proteins (ALP, Runx2, Ocn) and VEGF in hBMSCs, but promoted the migration and tube formation of the human umbilical vein endothelial cells (HUVECs). In vivo evaluation further confirmed this scaffold dramatically stimulated bone regeneration and angiogenesis in critical-sized defects in rats. Altogether, this composite scaffold carrying therapeutic exosomes had an osteogenic-angiogenic coupling effect and offered a new idea for cell-free bone tissue engineering.  相似文献   

18.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

19.
通过冷冻干燥技术, 将不同量的氧化石墨烯与海藻酸钠和壳聚糖复合, 构建复合支架材料. 研究了不同的氧化石墨烯含量(质量分数0, 0.3%, 0.5%, 0.7%, 1%)对支架材料微观结构、 孔隙率、 溶胀比、 体外降解性能、 机械性能及生物相容性的影响, 以确定复合支架中最佳氧化石墨烯含量. 研究结果表明, 复合材料呈固态海绵状结构, 具有一定的形态可塑性; 扫描电子显微镜观察发现, 各组支架均为三维网状结构, 随着氧化石墨烯含量的增加, 孔隙尺寸逐渐降低, 孔壁厚度增加, 孔隙尺寸在140~240 μm之间; 随氧化石墨烯含量的增加, 复合支架溶胀比和体外降解速率逐渐降低, 而机械强度明显增强; 体外细胞毒性显示, 当氧化石墨烯质量分数为0.3%时, 细胞存活率最高, 而当氧化石墨烯含量增高时, 细胞活性会被明显抑制, 造成细胞死亡. 因此, 氧化石墨烯在复合支架中最佳含量为0.3%.  相似文献   

20.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号