首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
IntroductionBone scaffold is expected to possess excellent mechanical and biological properties similar to natural bone tissues. In this study, we aimed to prepare a biomineralized Col and hydroxyapatite composite scaffold consisting of biomimetic bone components and multi-level bionic bone structure to strengthen its mechanical properties.MethodsWe prepared a Col/nano-hydroxyapatite biological composite scaffold with multi-level structure (from nanofibers to micron bionic bone motif to bionc bone scaffold) of biomimetic bone tissue, and biomineralized the scaffold in simulated body fluid (SBF) preheated to 37 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscope, were used to characterize the biomineralized products.ResultsMorphological study confirmed in situ deposition of nHA in the multi-scale hierarchical structure of the biomineralized scaffold. We explored the biomineralization nucleation mechanism of the scaffolds at the atomic level based on the first principles and the mechanisms for growth of mineralized nHA crystal array in its multi-scale structure, and how the double multiscales structure strengthened the mechanical properties of the material.ConclusionsThis synthetic bone scaffold, with bionic bone composition and double multi-level interface reinforcement, provides a new strategy for synthesizing bioactive bone scaffolds with enhanced biomechanical properties.  相似文献   

2.
Jia Li  Wei Zheng  Li Li  Yufeng Zheng  X. Lou   《Thermochimica Acta》2009,493(1-2):90-95
Thermal degradation behaviors of a composite constituted by poly(l-lactide) (PLA) and hydroxyapatite nanoparticle that was surface-grafted with l-lactic acid oligomer (g-HA) in a nitrogen atmosphere were studied using thermogravimetric analysis (TGA) and compared with PLA. The kinetic models and parameters of the thermal degradation of PLA and the g-HA/PLA composite were evaluated by the invariant kinetic parameters (IKP) method and Flynn–Wall–Ozawa (FWO) method based on a set of TGA data obtained at different heating rates. It was shown that the conversion functions calculated by means of the IKP method depend on a set of kinetic models. The g-HA particle slowed down the thermal degradation of PLA polymer matrix.  相似文献   

3.
Hydroxyapatite is an elective material for bone substitution. In this outline of our recent activity the crucial role of nanostructured ceramics in the design and preparation of ceramic scaffolds will be described, focussing on our more recent interest in biomimetic apatites, in particular apatites containing HPO42– CO32– and Mg2+ which are similar to the mineral component of bone. The paper describes such nanostructured products and, in particular, innovative synthetic techniques capable of yielding powders with higher reactivity and bioactivity. However, so far the characteristics of artificial bone tissues have been shown to be very different from those of natural bone, mainly because of the absence of the peculiar self-organizing interaction between apatites and the protein component. This causes modification of the structure of apatites and of the features of the overall composite forming human bone tissue. Therefore, attempts to mimic the features and structure of natural bone tissue, leading toward so-called bio-inspired materials, will be speculated upon. New techniques used to reproduce a composite in which a nanosize blade-like crystal of hydroxyapatite (HA) grows in contact with self-assembling fibres of natural polymer will be presented. In this specific case, the amazing ability of biological systems to store and process information at the molecular level, nucleating nanosize apatites (bio-inspired material), is exploited.  相似文献   

4.
硬脂酸改性纳米羟基磷灰石表面性能的研究   总被引:1,自引:0,他引:1  
采用硬脂酸(C17H35COOH)对纳米羟基磷灰石(n-HA)表面进行处理,并研究了n-HA与C17H35COOH的界面作用。透射电子显微镜(TEM)、傅立叶红外光谱(FTIR)以及X光电子能谱(XPS)分析表明,C17H35COOH在n-HA表面黏附,其中羧酸根离子(-COO-)与钙离子(Ca2+)之间形成了稳定的离子键,以羧酸钙形式存在。C17H35COOH改性后的n-HA与聚碳酸酯(PC)复合后,复合材料的力学性能与未改性n-HA相比有明显提高。扫描电子显微镜(SEM)结果显示,经处理后的HA微粒在PC中分散均匀,两者间结合紧密,无明显界面,复合材料的断裂呈明显的韧性断裂,随着n-HA无机粒子含量增加,复合材料的断裂也逐渐向韧性与脆性断裂共存转变。  相似文献   

5.
Abdominal wall defects are a frequently occurring condition in surgical practice. The most important are material structure and biocompatibility. In this study, polylactic acid (PLA) mesh composited with a 3D printing of acellular dermal matrix (ADM) material is used to repair abdominal wall defects. The results show that the adhesion score of ADM/PLA composite scaffolds is smaller than PLA meshes. Immunohistochemical assessment reveals that the ADM/PLA composite scaffold can effectively reduce the inflammatory response at the contact surface between the meshes and the abdominal organs. And the ADM/PLA composite scaffold can effectively reduce the expression levels of the inflammation-related factors IL-6 and IL-10. In addition, the ADM/PLA composite scaffold repair is rich in the expression levels of tissue regeneration-related factors vascular endothelial growth factor and transforming growth factor β. Thus, ADM/PLA composite scaffolds can effectively reduce surrounding inflammation to effectively promote the repair of abdominal wall defects.  相似文献   

6.
Summery: As a tooth is composed of hard tissue covering pulp, it may be suitable for tooth regeneration to use porous cylindrical hydroxyapatite (HA) scaffolds with a hollow center. Generally, in vivo examination, bone marrow cell suspension for osteogenesis in cell/HA composite scaffold without subculture is prepared at a density of 1 × 107 cells/ml or higher. In dentistry, stem cells would be obtained from tooth pulp. For dentine formation, a smaller number of stem cells must be used. In this study, a suspension of rat bone marrow cells at 1 × 106 cells/ml of density was prepared to estimate the adhesive effect of laminin. After immersion of HA scaffold in laminin solution, bone marrow cells were seeded in the pores of the HA scaffolds by immersion in the cell suspension for preparing the cell/HA composite scaffolds. The specimens were respectively implanted in the dorsal subcutis of 7-week-old male Fischer 344 rats for 4 weeks for histological examination. Comparing with the results of in vivo examination, alkaline phosphatase activity of bone marrow cells on laminin-coated plate with and without dexamethasone cultured for 2 weeks was measured in vitro. It was considered that laminin contributed to bone formation in pores of a scaffold.  相似文献   

7.
This paper reports for the first time a simple yet effective method for fabricating a conductive and highly porous scaffold material made up of polylactic acid (PLA) and conducting polyaniline (PANI). The electrical percolation state was successfully obtained at 3 wt% of PANI inclusions and reached a conductivity level of useable tissue engineering applications at 4 wt%. In addition, preliminary bioactivity test results indicated that the protonating agent could form a chelate at the scaffold surface leading to good in-vitro apatite forming ability during biomimetic immersion. This new conductive scaffold has potential as a suitable biomedical material that requires electrical conductivity.  相似文献   

8.
采用磷酸四钙和磷酸氢钙混合粉末制备了nCa/nP比为1.58的非化学计量羟基磷灰石骨水泥(n-HAC)及其多孔支架材料。结果表明:与nCa/nP=1.67的化学计量羟基磷灰石骨水泥(HAC)相比,n-HAC的凝结时间和抗压强度没有明显的区别。XRD和IR显示:n-HAC与HAC都为羟基磷灰石结构,但n-HAC在Tris-HCl缓冲溶液的降解性明显大于HAC。细胞培养结果表明:成骨细胞在n-HAC和HAC两种材料上的粘附和细胞形态没有明显的区别,但细胞在n-HAC上的增殖率明显高于HAC。将多孔n-HAC支架材料植入兔股骨缺损处,观察其修复骨缺损情况,组织学分析结果表明:新生骨在多孔支架的表面形成,并长入其内部;n-HAC在体内的降解比HAC快,能明显地促进新骨生成。  相似文献   

9.
A poor biocompatibility and bioactivity of invasive materials remains major problems for biomaterialbased therapy. In this study, we introduced gelatin scaffolds carrying both bone morphogenetic protein-2(BMP-2) biomimetic peptide and vascular endothelial growth factor-165(VEGF) that achieved controlled release, cell attachment, proliferation and differentiation. To promote osteogenesis with VEGF, we designed the BMP-2 biomimetic peptide that comprised BMP-2 core sequence oligopeptide(SSVPT), ph...  相似文献   

10.
Bone tissue engineering scaffolds necessities appropriate physicochemical and mechanical properties to support its renewal. Electrospun scaffolds have been used unequivocally in bone tissue restoration. The main intention of this research is to develop electrospun polyurethane (PU) scaffold decorated with metallic particles and essential oil with advanced properties to make them as a putative candidate. The nanocomposite scaffold exhibited appropriate wettability and suitable fiber diameter compared to the polyurethane scaffold. Interaction of the added constituents with the polyurethane was corroborated through hydrogen bonding formation. Tensile strength of the composites was enhanced compared to the polyurethane scaffold. Thermal analysis depicted the lower weight loss of the composite scaffold than the pristine PU. Blood coagulation was significantly delayed and also the composite surface rendered safe interaction with red blood cells. In vitro toxicity testing using fibroblast cells portrayed the nontoxic behavior of the fabricated material. The above-said advanced properties of the composite scaffold can be warranted for bone tissue engineering application.  相似文献   

11.
Bioresorbable polymeric materials have risen great interest as implants for bone tissue regeneration, since they show substantial advantages with respect to conventional metal devices, including biodegradability, flexibility, and the possibility to be easily modified to introduce specific functionalities. In the present work, an innovative nanocomposite scaffold, properly designed to show biomimetic and osteoinductive properties for potential application in bone tissue engineering, was developed. The scaffold is characterized by a multi-layer structure, completely different with respect to the so far employed polymeric implants, consisting in a poly(d,l-lactide-co-glycolide)/polyethylene glycol electrospun nanofibrous mat sandwiched between two hydrogel gelatin layers enriched with tantalum nanoparticles (NPs). The composition of the electrospun fibers, containing 10 wt% of polyethylene glycol, was selected to ensure a proper integration of the fibers in the gel phase, essential to endow the composite with flexibility and to prevent delamination between the layers. The scaffold maintained its structural integrity after six weeks of soaking in physiological solutions, albeit the gelatin phase was partially released. The combined use of gelatin, bioresorbable electrospun fibers and tantalum NPs endows the final device with biomimetic and osteoinductive properties. Indeed, results of the in vitro tests demonstrate that the obtained scaffolds clearly represent a favorable milieu for normal human bone-marrow derived mesenchymal stem cells viability and osteoblastic differentiation; moreover, inclusion of tantalum NPs in the scaffold improves cell performance with particular regard to early and late markers of osteoblastic differentiation.  相似文献   

12.
Interconnected porous hydroxyapatite (HA) scaffolds are widely used for bone repair and replacement, owing to their ability to support the adhesion, transfer, proliferation and differentiation of cells. In the present study, the polymer impregnation approach was adopted to produce porous HA scaffolds with three-dimensional (3D) porous structures. These scaffolds have an advantage of highly interconnected porosity (≈85%) but a drawback of poor mechanical strength. Therefore, the as-prepared HA scaffolds were lined with composite polymer coatings in order to improve the mechanical properties and retain its good bioactivity and biocompatibility at the same time. The composite coatings were based on poly(d,l-lactide) (PDLLA) polymer solutions, and contained single component or combination of HA, calcium sulfate (CS) and chondroitin sulfate (ChS) powders. The effects of composite coatings on scaffold porosity, microstructure, mechanical property, in vitro mineralizing behavior, and cell attachment of the resultant scaffolds were investigated. The results showed that the scaffolds with composite coatings resulted in significant improvement in both mechanical and biological properties while retaining the 3D interconnected porous structure. The in vitro mineralizing behaviors were mainly related to the compositions of CS and ChS powders in the composite coatings. Excellent cell attachments were observed on the pure HA scaffold as well as the three types of composite scaffolds. These composite scaffolds with improved mechanical properties and bioactivities are promising bone substitutes in tissue engineering fields.  相似文献   

13.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   

14.
Designing and fabricating nanocomposite scaffolds for bone regeneration from different biodegradable polymers and bioactive materials are an essential step to engineer tissues. In this study, the composite scaffold of gelatin/hyaluronic acid (Gel/HA) containing nano-bioactive glass (NBG) was prepared by using freeze-drying method. The biocompatibilities in-vitro of the Gel-HA/NBG composite scaffolds, including MTT assay, ALP activity, von Kossa staining and tetracycline staining, were investigated. The SEM observations revealed that the prepared scaffolds were porous with three-dimensional (3D) and interconnected microstructure, agglomerated NBG particles were uniformly dispersed in the matrix. MTT results indicated that the tested materials didn't show any cytotoxicity. The presence of NBG in the composite scaffold further enhanced the ALP activity in comparison with the pure Gel/HA scaffold. The von Kossa staining and tetracycline staining results also indicated that the NBG may improve the cell response. Therefore, the results indicated the nanocomposite scaffold made from Gel, HA and NBG particles could be considered as a potential bone tissue engineering implant.  相似文献   

15.
A new kind of tissue engineering scaffold materials of needle-like nano-hydroxyapatite (n-HA) and polyamide (PA) biocomposite is prepared by co-solution, co-precipitation method and water treatment under normal atmospheric pressure. The n-HA crystals uniformly distribute in the composite with a crystal size of 10-20 nm in diameter by 70-90 nm in length. The n-HA/PA composite has good homogeneity, high n-HA content (65 wt%), and high bioactivity. Strong molecule interactions and chemical bondings are present between the n-HA and PA in the composite, which are verified by IR, XPS and XRD. The composite has excellent mechanical properties close to the natural bone. The porous 3-D scaffold is made by injection foaming method, which has not only macropores, but also micropores on the walls of macropores. The porosity is 80% and the average macropore diameter is about 300 μm of the composite.The n-HA/PA composite can be used for tissue engineering and bone repair or substitute.  相似文献   

16.
以模拟软体动物珍珠层的周期性基质控制形成过程制备仿生层状复合材料. 将聚苯乙烯磺酸钠(PSS)与聚二烯二甲基氯化铵(PDAC)用逐层浸渍的方法使其组装成多层膜, 用于诱导过饱和溶液中CaCO3的结晶, 详细研究了膜紫外吸收随组装层数增加的线性变化. 扫描电镜和X射线衍射表征了晶体的形貌和结构. (PDAC/PSS)15PDAC膜诱导获得的CaCO3晶体为六面体结构, 晶体尺寸为30~40 μm; (PDAC/PSS)15膜诱导CaCO3结晶, 可以在膜表面获得形貌与珍珠层非常相似的CaCO3晶体, 结晶10 h获得的晶片结构呈规则的六边形, 片尺寸约为10~20 μm. X射线衍射结果表明两种晶体的晶格结构与天然珍珠层差异明显, 说明静电作用为晶体形貌的主控因素之一, 但不是晶格结构的决定因素. 复合材料断面电镜照片表明其为层状结构.  相似文献   

17.
To develop a novel tissue engineering scaffold with the capability of controlled releasing BMP-2-derived synthetic peptide, porous poly(lactic acid)/chitosan microspheres (PLA/CMs) composites containing different quantities of chitosan microspheres were prepared by a thermally induced phase separation method. FTIR analysis revealed that there were strong hydrogen bond interactions between the PLA and chitosan component. Introduction of less than 30% CMs (on PLA weight basis) did not remarkably affect the morphology and porosity of the PLA/CMs scaffolds. The compressive strength of the composite scaffolds increased from 0.48 to 0.66 MPa, while the compressive modulus increased from 7.29 to 8.23 MPa as the microspheres' contents increased from 0% to 50%. In vitro degradability investigation indicated that the dissolution of chitosan component was preferential than PLA matrix and the inclusion of CMs could neutralize the acidity of PLA degradation products. Compared with the rapid release from CMs, the synthetic peptide was released from PLA/CMs scaffolds in a temporally controlled manner, mainly depending on the degradation of PLA matrix. The promising microspheres based scaffold release system can be used to deliver bioactive factors for a variety of non-loaded bone regeneration and tissue engineering application.  相似文献   

18.
Poly(lactic acid) (PLA) microspheres have great potential in bone tissue engineering. However, their applications have been limited by surface and bulk properties such as hydrophobicity, lack of cell recognition sites and acidic degradation products. Apatite is a mineral which can effectively promote the adhesion and growth of bone cells. In this study, the bonelike mineral, carbonate apatite, was successfully used to functionalize porous PLA microspheres by a biomimetic mineralization method. To improve apatite formation, porous PLA microspheres were first selectively hydrolyzed in NaOH solution to increase the density of polar anionic groups on the surface, and then immersed in simulated body fluid for biomineralization. The morphology, composition, and phase structure of bioactive mineral grown on the original and hydrolyzed PLA microspheres were analyzed and compared quantitatively. The results showed that the hydrolysis which took place on the PLA microspheres enhanced the nucleation and growth of apatite. MG-63 cells attached well and spread actively on the mineralized PLA microspheres, indicating their strong potential in bone tissue engineering.  相似文献   

19.
The ability to control the architecture and strength of a bone tissue engineering scaffold is critical to achieve a harmony between the scaffold and the host tissue. Rapid prototyping (RP) technique is applied to tissue engineering to satisfy this need and to create a scaffold directly from the scanned and digitized image of the defect site. Design and construction of complex structures with different shapes and sizes, at micro and macro scale, with fully interconnected pore structure and appropriate mechanical properties are possible by using RP techniques. In this study, RP was used for the production of poly(ε-caprolactone) (PCL) scaffolds. Scaffolds with four different architectures were produced by using different configurations of the fibers (basic, basic-offset, crossed and crossed-offset) within the architecture of the scaffold. The structure of the prepared scaffolds were examined by scanning electron microscopy (SEM), porosity and its distribution were analyzed by micro-computed tomography (µ-CT), stiffness and modulus values were determined by dynamic mechanical analysis (DMA). It was observed that the scaffolds had very ordered structures with mean porosities about 60%, and having storage modulus values about 1 × 107 Pa. These structures were then seeded with rat bone marrow origin mesenchymal stem cells (MSCs) in order to investigate the effect of scaffold structure on the cell behavior; the proliferation and differentiation of the cells on the scaffolds were studied. It was observed that cell proliferation was higher on offset scaffolds (262000 vs 235000 for basic, 287000 vs 222000 for crossed structure) and stainings for actin filaments of the cells reveal successful attachment and spreading at the surfaces of the fibers. Alkaline phosphatase (ALP) activity results were higher for the samples with lower cell proliferation, as expected. Highest MSC differentiation was observed for crossed scaffolds indicating the influence of scaffold structure on cellular activities.  相似文献   

20.
A nano-structured scaffold was designed for bone repair using collagen, hyaluronic acid (HYA) and nano-bioactive glass (NBaG) as its main components. The collagen-HYA/NBaG scaffold was prepared by using a freeze-drying technique and characterized by scanning electron microscopy (SEM). Osteoblastls were seeded on these scaffolds and their proliferation rate, alkaline phosphatase (ALP) activity and ability to form mineralized bone nodules were compared with those osteoblasts grown on cell culture plastic surfaces. The cross-section morphology shows that the collagen-HYA/NBaG scaffold possessed a three-dimensional (3D) interconnected homogenous porous structure. The results obtained from biological assessment show that this scaffold did not negatively affect osteoblasts proliferation rate and improves osteoblasts function as shown by increasing the ALP activity and calcium deposition and formation of mineralized bone nodules. Therefore, the composite scaffolds could provide a favorable environment for initial cell adhesion, maintained cell viability and cell proliferation, and had good in-vitro biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号