首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
杯[8]芳烃键合硅胶固定相的制备、表征及色谱性能   总被引:1,自引:0,他引:1  
杯芳烃通过疏水Π-Π、氢键和静电等作用能与中性分子及离子形成包合物,在离子选择性电极、催化、分离和酶模拟等领域受到关注.已报道的杯芳烃键合固定相的制备方法[1~3]都是先合成含杯芳烃硅烷化试剂,然后通过硅胶硅烷化反应制备键合固定相.其制备路线反应过程长,各种有机中间体纯化操作复杂.前文[4]曾以氯丙基键合硅胶为中间体,通过固相连续反应制备了氮杂冠醚键合硅胶固定相.本文采用固相连续反应制备了一种新型的对-叔丁基杯[8]芳烃键合固定相,通过元素分析、红外光谱等手段获得键合相分子结构信息,以多环芳烃和二取代苯位置异构体为溶质,对固定相的色谱性能及保留机理进行了研究.  相似文献   

2.
张庆合  张凌怡  张维冰  李彤  张玉奎 《分析化学》2004,32(10):1283-1286
以十二烷基键合氧化锆(C12-ZrO2)作为固定相,制备了填充毛细管电色谱(CEC)柱,较为系统地研究了流动相条件对电渗流的影响、填充CEC柱的稳定性、碱性与中性化合物的保留与流动相pH值和有机溶剂含量的关系。C12-ZrO2固定相填充CEC柱在pH3~11.7范围内具有极好的稳定性;利用磷酸盐与氧化锆表面之间较强的相互作用,能够有效解决传统硅胶键合烷基固定相在有机溶剂含量低的流动相条件下不稳定的问题;同时吸附磷酸盐的固定相表面使得在更宽的流动相pH值范围内CEC柱有足够的电渗流,进一步拓宽CEC的应用领域。  相似文献   

3.
在2.2mm内径的石英管中,采用正硅酸四乙酯水解的溶胶-凝胶法合成了填充细石英砂的高比表面积电色谱整体柱,并用正辛基三乙氧基硅烷键合制备反相色谱固定相.填充细石英砂的电色谱整体柱抑制了大柱径引起的电流热效应,采用电渗流驱动流动相,分离了苯酚和苯,实验证明该整体微柱用于电色谱分离和改善浓度检出限的可行性.  相似文献   

4.
开管毛细管电色谱进展   总被引:5,自引:0,他引:5  
开管毛细管电色谱是近年发展起来的一种高效、快速的新型微柱分离方法。它是在毛细管管壁涂布或键合固定相,以电渗流驱动流动相的一种色谱分离模式。该文对开管毛细管电色谱的发展、柱制备、理论进行了较为详细的综述,引用文献47篇  相似文献   

5.
以大黄酸为原料,γ-氨丙基三乙氧基硅烷(KH-550)为偶联剂,简便制备了一种新型羧基键合硅胶固定相(RBSP),并用红外光谱、热重分析及元素分析对其结构进行表征.考察了流动相中甲醇含量对键合固定相色谱性能的影响,并以含酸性、中性和碱性化合物的混合物为溶质,评价了RBSP的色谱性能.以甲醇-水为流动相,用C18柱作参比,研究了该键合硅胶作为HPLC固定相对两种大豆异黄酮化合物和几种生物碱基的分离,并对其色谱分离机理进行了初步探讨.实验结果表明,该固定相(RBSP)具有较好的反相色谱性能,同时由于键合相中含有酚羟基及酰胺基团,能为多种溶质提供作用位点,对极性化合物的分离具有明显优势,且分离速度快,可有效用于极性化合物的分离分析.  相似文献   

6.
合成了对-叔丁基杯[6]芳烃高效液相色谱键合固定相,考察了多环芳烃、硝基苯胺位置异构体、邻苯二甲酸酯及苯的单官能团取代化合物的反相液相色谱保留行为。发现该键合相具有明显的反相特征,对位置异构体的分离优于C18柱,并讨论了可能的分离机理。  相似文献   

7.
合成了一种新的对-叔丁基杯[8]芳烃的高效液相色谱键合固定相,考察了多环芳烃、苯甲酸酯、邻苯二甲酸酯、苯的单官能团取代物在该键合相上的反相液相色谱保留行为,并以甲醇-水作为流动相分离了氨基苯酚的邻、间、对取代位置异构体.研究结果发现,该键合相具有明显的反相特征,并讨论了可能的分离机理.  相似文献   

8.
Zhou S  Lin X  Xie Z 《色谱》2011,29(8):786-790
以γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷为偶联剂,将羧甲基壳聚糖键合至毛细管内壁上。对毛细管预处理、硅烷化以及羧甲基壳聚糖键合反应参数进行了优化,考察了开管柱内表面结构形貌、电渗流、重现性和电色谱分离性能。扫描电镜图显示羧甲基壳聚糖均匀地键合在毛细管内表面。调节流动相的pH值可产生正向和反向电渗流,电渗流的相对标准偏差(RSD): 日内小于0.8%(n=6)、日间小于3.5%(n=3)、同一批次间小于4.3%(n=3)、不同批次柱间小于6.1%(n=3),重现性较好。4种核苷酸(腺嘌呤核苷酸、鸟嘌呤核苷酸、胞嘧啶核苷酸、尿嘧啶核苷酸)在修饰后的毛细管电色谱柱上得到了较好的分离,柱效达到36000~182000 塔板/m。结果表明,所建立的开管柱制备方法简单有效、稳定性好。  相似文献   

9.
以自合成的C60 键合硅胶液相色谱固定相 ,分别选用3种不同选择性的流动相体系 :异丙醇 -环己烷 ,氯仿 -环己烷和二氯甲烷 -环己烷 ,考察了流动相组成对杯芳烃及杯芳冠醚化合物保留行为和分离选择性的影响。在一定的流动相条件下溶质能得到较好分离。  相似文献   

10.
酯型十八烷基键合硅胶整体柱的制备、表征及性能评价   总被引:3,自引:0,他引:3  
将硅烷偶联剂γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与十八酸反应,再键合到硅胶整体柱上,得到了酯型十八烷基键合固定相,并用红外光谱、元素分析对其进行了表征。在以甲醇-水为流动相的反相色谱条件下分离了苯、联苯和蒽的混合样品,评价了该整体柱的色谱性能,考察了该整体柱适用的pH范围,以及柱压降、柱效与流速的关系。结果表明,该硅胶整体柱键合效果良好,具有较好的反相色谱性能,且在pH=2~8时稳定性好,柱压降、柱效受流速影响较小,可有效地用于化合物的快速分离分析。  相似文献   

11.
Chen JL  Hsieh KH 《Electrophoresis》2010,31(23-24):3937-3948
A new nanoparticle-bound polymer stationary phase was prepared by in situ polymerization of methacrylamide (MAA), bis-acrylamide crosslinker, and carboxylated multi-walled carbon nanotubes (multi-walled CNTs; MWNTs), using the abundant double bonds in the cyclopentadienyl rings in MWNT structure, on a silanized capillary. Each intermediate capillary between the synthesis steps was characterized by SEM, by ATR-IR, and by EOF measurements varying the pH, concentration, and volumetric ratios of ACN in running buffers. The resulting EOF profile was comparable to those of two other capillaries with different phase matrices, silica hydride and polybutyl methacrylate (BMA) phases. With the complex functionality of MWNTs on the hydrophilic polyacrylamide network, the MAA-CNT capillary was capable of separating diverse samples with a wide range of polarity and dissociation properties using open-tubular CEC. Besides optimizing CEC conditions, the migration times of samples were analyzed with respect to velocity and retention factors to evaluate electrophoretic and chromatographic contributions to the CEC mechanism. The migration rates of benzoic acids were determined by the electrophoretic mobilities of the various phenolate ions, while phenolic aldehydes and ketones were additionally influenced by chromatographic interactions, such as π-π, electrostatic effects, hydrogen bonding, and hydrophobic interactions. The retention factors were greater for flavonoids, which are polyphenolic, than for simple phenols, but were smaller than those obtained from the hydrophobic BMA-CNT column. A complete well-resolved separation of the cationic forms of tetracyclines was acheived either by electrophoresis or by chromatography in the MAA-CNT capillary, but not in the BMA-CNT and silica hydride-CNT capillaries.  相似文献   

12.
Molecularly imprinted composite materials were evaluated as chiral stationary phases in capillary electrochromatography (CEC). These consisted of spherical silica particles of different sizes and of different porosities, containing a surface-immobilized layer of molecularly imprinted polymer (MIP) targeted to bind L-phenylalanine anilide. Fused silica capillaries were packed over a length of 8.5 cm, using a pneumate amplification pump, and the stationary phase thus obtained was tested with respect to its electrochromatographic performance. The electroendosmotic flow (EOF) mobility was evaluated with respect to the content of grafted polymer, as well as the ionic strength and the acetonitrile content of the electrolyte. Moreover, the influence of the layer thickness and of the stationary phase porosity on the performance and on the sample load capacity was investigated. The packings exhibited different relative efficiencies for the two enantiomers. The results were discussed in terms of differencies in accessibility to the binding sites of the packings and of the mechanism of EOF generation. In the wide context of the different approaches so far proposed for MIP stationary phases in CEC, these materials can be a good alternative, worthy of further development and application, not restricted to chiral separations.  相似文献   

13.
毛细管反相电色谱法分离行为的研究   总被引:7,自引:3,他引:4  
魏伟  王义明  罗国安 《色谱》1997,15(2):110-113
对乙睛-水-磷酸二氢销体系毛细管反相电色谱分离行为进行了研究。采用柱上紫外检测,在75μmi.d.×30cm的毛细管ODS(3μm)填充柱上获得了小于2.0的折合培板高度。同时还研究了乙睛的比例、电解质的浓度和电场强度等因素对电渗流和往效的影响。  相似文献   

14.
Hu J  Xie C  Tian R  He Z  Zou H 《Electrophoresis》2006,27(21):4266-4272
A hybrid silica monolithic stationary phase for RP CEC was prepared by in situ co-condensation of (3-mercaptopropyl)-trimethoxysilane (MPTMS), phenyltriethoxysilane (PTES), and tetraethoxysilane (TEOS) via a sol-gel process. The thiol groups on the surface of the stationary phase were oxidized to sulfonic acids by peroxytrifluoroacetic acid. The introduced sulfonic acid moieties on the monoliths were characterized by a strong and relatively stable EOF in a broad pH range from 2.35 to 7.0 in CEC. Aromatic acids and neutral compounds can be simultaneously separated in this column under cathodic EOF. The CEC column exhibited a typical RP chromatographic mechanism for neutral compounds due to the introduced phenyl groups.  相似文献   

15.
Capillary electrochromatography (CEC) requires stationary phases that enable appropriate electroosmotic propel under various conditions. Analyte retention can be controlled through hydrophobic or electrostatic interaction with the packing material. The development and characterization of new strong anion-exchange materials with additional hydrophobic moieties (SAX/C18 mixed-mode phases) is described. The synthesis was based on polymer encapsulation of porous silica. The phases were systematically characterized by means of elemental analyses, HPLC frontal analyses and CEC experiments. The studies focused on the influence of various parameters (e.g., pH, kind of buffer, capillary wall) on the electroosmotic flow (EOF). Phases with high anion-exchange capacity generated a fast and constant EOF over a wide pH range. Long-time stability of EOF and hydrophobic retention under CEC conditions were demonstrated within the course of 100 consecutive injections. The applicability of the SAX/C18 phases in appropriate buffer systems is demonstrated for neutral, acidic and basic compounds.  相似文献   

16.
Different models have been described in the literature to evaluate the total porosity of CEC columns: gravimetric, flow as well as conductivity-based methods. In this study, these models have been compared for two kinds of CEC columns: two mixed-mode silica particle stationary phases and different monolithic columns (acrylate or polystyrene divinylbenzene-based). The total porosities measured from the conductivity-based methods were lower than the total column porosities obtained by gravimetric or flow methods for all the investigated columns while the wide distribution of observed values shows that conductivity-based methods discriminate columns more efficiently with very different properties. We propose a conductivity-based method taking into account the actual length proposed by Horvath, to evaluate what we call an "actual electrokinetic" porosity (AEP). This parameter, based on electrokinetic theory only, affords the most consistent evaluation of porosity under experimental CEC conditions for the packed- and acrylate-based monolithic columns. To illustrate the potential of AEP and actual EOF for the estimation of the performances of a CEC system (stationary and mobile phases) we studied the influence of the mobile-phase composition on these parameters for CEC separations with an ammonium embedded packed stationary phase. The AEP and the actual electroosmotic mobility should allow a better understanding of the perfusive EOF and stationary-phase wettability. For neutral compounds (substituted phenols), AEP evaluation allowed us to predict the mobile-phase conditions able to enhance the efficiency while both AEP and actual EOF had to be considered in the case of peptide analysis.  相似文献   

17.
Amylose tris(5-chloro-2-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSP) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the nature of silica, the particle size and pore diameter, the chiral selector loading onto silica, the mobile phase composition and pH, as well as separation variables such as a linear flow rate of the mobile phase, applied voltage in CEC, etc. on the separation of enantiomers was studied. It was found that CSPs based on amylose tris(5-chloro-2-methylphenylcarbamate) can be used for preparation of stable capillary columns for enantioseparations by nano-LC and CEC in combination with polar organic and aqueous–organic mobile phases. Higher peak efficiency was observed in CEC than in nano-LC.  相似文献   

18.
Chen X  Jin W  Qin F  Liu Y  Zou H  Guo B 《Electrophoresis》2003,24(15):2559-2566
Positively charged chiral stationary phases (CSPs) were prepared for capillary electrochromatography (CEC) separation of enantiomers by chemically immobilizing cellulose derivatives onto diethylenetriaminopropylated silica (DEAPS) with tolylene-2,4-diisocyanate (TDI) as a spacer reagent. Anodic electroosmotic mobility was observed in both nonaqueous and aqueous mobile phases due to the positively charged amines on the surface of the prepared CSPs. For comparison, the traditionally used 3-aminopropyl silica (APS) was also adopted as the base material instead of DEAPS to prepare CSP. It was observed that the EOF on the DEAPS-based CSP was 18%-60% higher than that on the APS-based CSP under nonaqueous mobile phase conditions. Separation of enantiomers in CEC was performed on the positively charged CSPs with the nonaqueous mobile phases of pure ethanol or mixture of hexane-alcohol and the aqueous phases of acetonitrile-water or 95% ethanol. Fast separation of enantiomers was achieved on the newly prepared CSPs.  相似文献   

19.
Capillaries consisting of two segments each packed with a different stationary phase were introduced for the control and manipulation of the electroosmotic flow (EOF) in capillary electrochromatography (CEC). This kind of column configuration was called segmented capillary where one segment was packed with octadecyl silica (ODS) and served as the separation segment while the other segment was packed with bare silica and functioned as the EOF accelerator segment. The average flow in the segmented capillary increased linearly with increasing fractional length of the EOF accelerator segment, and consequently the analysis time was reduced. Under a given set of conditions, the average flow can be varied over a certain range that extends from the EOF in the individual ODS capillary at the lower end to the EOF in the individual bare silica capillary at the higher end. The pore size of the bare silica in the EOF accelerator segment influenced the average flow in the segmented capillary. Because of the difference in the EOF of the individual segments, the average flow across the segmented capillary is partially degenerated from EOF to viscous flow. Furthermore, the retaining frits in CEC columns are restrictive points which slow down the average flow, thus furthering the degeneration of the flow from EOF to viscous flow. In other words, in CEC columns containing retaining frits, the flow of the mobile phase is not only based on electroosmosis but is contaminated by a viscous component.  相似文献   

20.
Allen D  El Rassi Z 《The Analyst》2003,128(10):1249-1256
Three different synthetic routes have been introduced and evaluated for the preparation of amphiphilic silica-based monoliths possessing surface-bound octadecyl ligands and positively charged groups. The amphiphilic silica monoliths (designated as cationic C18-monoliths) have been designed for use in reversed-phase capillary electrochromatography (RP-CEC) with hydro-organic mobile phases. These amphiphilic stationary phases yielded anodic electroosmotic flow (EOF) over a wide range of mobile phase pH. The magnitude of EOF remained constant up to pH 4.0 and then decreased at pH > 4.0 due to the ionization of silanol groups and the subsequent decrease in the net positive surface charge density of the amphiphilic monoliths. The cationic C18-monoliths exhibited reversed-phase chromatography (RPC) behavior toward non-polar solutes (e.g., alkyl benzenes), which parallels that observed with octadecyl-silica (ODS) monoliths. On the other hand, the amphiphilic stationary phases exhibited both non-polar and polar interactions toward slightly polar solutes such as anilines and PTH-amino acids. CEC retention factor k* and velocity factor k*e, which reflects the contribution of the electrophoretic mobility, were evaluated for charged solutes such as anilines and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号