首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Solubility in the Na2Cr2O7-(NH4)2Cr2O7-K2Cr2O7-H2O four-component water-salt system at 25, 50, and 75°C was studied for the first time. Phase field boundaries for individual salts and potassium and ammonium dichromate solid solutions, monovariant lines, and invariant points were determined. Experimental data were used to optimize the looped isohydric process of potassium dichromate preparation involving additional salts.  相似文献   

2.

Abstract  

The intermetallic zinc compounds La3Pd4Zn4 and La3Pt4Zn4 were synthesized by induction melting of the elements in sealed tantalum tubes. The structures were refined from X-ray single-crystal diffractometer data: Gd3Cu4Ge4 type, Immm, a = 1,440.7(5), b = 743.6(2), c = 419.5(2) pm, wR 2 = 0.0511, 353 F 2 for La3Pd4Zn4; and a = 1,439.9(2), b = 748.1(1), c = 415.66(6) pm, wR 2 = 0.0558, 471 F 2 for La3Pt4Zn4 with 23 variables per refinement. The palladium (platinum) and zinc atoms build up a three-dimensional polyanionic [Pd4Zn4] (260–281 pm Pd–Zn) and [Pt4Zn4] (260–279 pm Pt–Zn) network in which the lanthanum atoms fill cavities of CN 14 (6 Pd/Pt + 8 Zn for La1) and CN 12 (6 Pd/Pt + 6 Zn for La2), respectively. The copper position of the Gd3Cu4Ge4 type is occupied by zinc and the two crystallographically independent germanium sites by palladium (platinum), a new coloring pattern for this structure type. Within the [Pd4Zn4] and [Pt4Zn4] the Pd2 and Pt2 atoms form Pd2–Pd2 (291 pm) and Pt2–Pt2 (296 pm) dumbbells. The structures of La3Pd4Zn4 and La3Pt4Zn4 are discussed with respect to the prototype Gd3Cu4Ge4 and the Zintl phase Sr3Li4Sb4. Temperature-dependent magnetic susceptibility measurements indicate diamagnetism for La3Pt4Zn4 and Pauli paramagnetism for La3Pd4Zn4.  相似文献   

3.
The phase relations in the cross-section of the K2W2O7-K2WO4-KPO3 containing 15 mol% Bi2O3 were undertaken using flux method. Crystallization fields of K6.5Bi2.5W4P6O34, K2Bi(PO4)(WO4), Bi2WO6, KBi(WO4)2 and their cocrystallization areas were identified. Novel phase K6.5Bi2.5W4P6O34 was characterized by single-crystal X-ray diffraction: sp. gr. P−1, a=9.4170(5), b=9.7166(4), c=17.6050(7) Å, α=90.052(5)°, β=103.880(5)° and γ=90.125(5)°. It has a layered structure, which contains {K7Bi5W8P12O68} layers stacked parallel to ab plane and sheets composed by potassium atoms separating these layers. Sandwich-like {K7Bi5W8P12O68} layers are assembled from [W2P2O13] and [BiPO4] building units, and are penetrated by tunnels with K/Bi atoms inside. FTIR-spectra of K2Bi(PO4)(WO4) and K6.5Bi2.5W4P6O34 were discussed on the basis of factor group theory.  相似文献   

4.
The structural, electronic, and vibrational characteristics and energies of the isolated polyoxide clusters B20O30, Al20O30, V20O50, Si20O30H20, and Si20O30F20 and their complexes with the H ion and ammonia complexes Al20O30 · nNH3 have been calculated by the density functional theory B3LYP method with different basis sets. The computation results show that the symmetric closo structure I h with oxygen bridges located above the centers of the faces of an empty [M20] dodecahedron is more favorable for V20O50, Si20O30H20, and Si20O30F20. For B20O30, the cage closo isomer is also more favorable than the other isomers, but its structure is severely distorted as compared to a dodecahedron and has a symmetry close to C 3 . For Al20O30, the I h structure corresponds to a high-lying local minimum of the potential energy surface. For Al20O30, a set of unusual puckshaped isomers of symmetry C i , with different numbers of four-coordinate atoms IVAl and three-coordinate atoms IIIO, was localized; these structures are more than 90 kcal/mol more favorable than the dodecahedron I h . The most favorable isomer of Al20O30 contains twelve four-coordinate atoms IVAl and four five-coordinate atoms VAl. The energies of dissociation of the most favorable M20O30 clusters into the M2O3 (C 2v ) and M4O6 (T d ) fragments and, in the case of Al20O30, also into the Al8O12 (O h ) and Al12O18 (D 3d ) fragments, have been estimated. The conclusion has been drawn that these clusters can, in principle, exist and can be experimentally detected in the isolated state. Analogous calculations have been performed for ammonia complexes Al20O30 · nNH3 with n varying from 1 to 20. The effect of solvation on the relative stability of the dodecahedral and puckshaped isomers of the Al20O30 cluster is observed. The isomers with ammonia molecules in their first coordination sphere become much closer to one another on the energy scale; however, the dodecahedron remains a considerably less favorable intermediate. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 4, pp. 624–635.  相似文献   

5.
The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.  相似文献   

6.
The following complex oxynitride perovskites have been prepared: LaMg1/3Ta2/3O2N, LaMg1/2Ta1/2O5/2N1/2, and BaSc0.05Ta0.95O2.1N0.9. Synchrotron X-ray powder diffraction analyses show that LaMg1/3Ta2/3O2N and LaMg1/2Ta1/2O5/2N1/2 are isostructural to the oxide La2Mg(Mg1/3Ta2/3)O6 (space group P21/n), whereas BaSc0.05Ta0.95O2.1N0.9 has a simple cubic symmetry similarly to BaTaO2N. The orderings of octahedral cations are markedly diminished in the above oxynitrides, as compared with the related oxides such as La2Mg(Mg1/3Ta2/3)O6 and Ba2ScTaO6. The optical band gaps are similar for the homologous compositions, LaMg1/3Ta2/3O2N, LaMg1/2Ta1/2O5/2N1/2 and LaTaON2 (1.9 eV), and BaSc0.05Ta0.95O2.1N0.9 and BaTaO2N (1.8 eV), while the absorption edges become broader for the complex derivatives. As revealed from the impedance spectroscopic analysis, the oxynitrides have clearly different dielectric components from those of comparable oxides containing Ta5+. Impedance spectroscopy reveals interesting capacitor geometry in BaSc0.05Ta0.95O2.1N0.9 in which the semiconducting oxynitride grains are separated by insulating secondary phases. Most notably BaSc0.05Ta0.95O2.1N0.9 has a bulk component with a high relative permittivity (κ=7300) and the grain boundary component with an even higher κ.  相似文献   

7.
Single crystals of Zr3Al3C5—a carbide previously reported with the formula ZrAlC2−x—were isolated from a sample prepared by reaction of ZrC with an excess of aluminum. The carbides ScAl3C3and UAl3C3were synthesized from the elemental components by arc-melting. The crystal structures of these three compounds were redetermined from four-circle X-ray diffractomter data. In the original structure determination of ZrAlC2−x, the metal positions were found to form close-packed layers in the space groupP63/mmc, while the carbon atoms were assumed to occupy 5/6 of the octahedral voids at random. The present structure determination in the space groupP63/mc(R=0.024 for 519 structure factors and 23 variable parameters) shows that all carbon positions are fully occupied and one has a trigonal bipyramidal aluminum coordination. The structures of ScAl3C3and UAl3C3also have originally been determined in the space groupP63/mmc. The present structure refinements in the space groupP63mc(ScAl3C3:R=0.031 for 282Fvalues and 16 variables; UAl3C3:R=0.029 for 217Fvalues and 16 variables) essentially confirms the structures with the exception of one aluminum site. In all of these structures the metal atoms are arranged in close-packed layers and together with the previously reported structure of U2Al3C4they form a homologous series with the general formulaT1+nAl3C3+n, wheren=0, 1, 2 for ScAl3C3, U2Al3C4, and Zr3Al3C5, respectively. The packing of the metal atoms is represented by the Zhdanov symbols (4)2, (5)2, and (6)2. The arrangement of the aluminum atoms is very similar to that of the binary carbide Al4C3, while the other metal atoms form a cubic stacking sequence, as it is found in the binary carbidesTC with NaCl type structure.  相似文献   

8.
phase diagrams of KCl-KBO2-K2CO3, K2MoO4-KBO2-K2CO3, and K2WO4-KBO2-K2CO3 ternary systems were studied by a calculation-experimental method and differential thermal analysis (DTA). The coordinates of ternary eutectics were determined to be E 1: 622°C, 8.5 mol % KBO2, 56.5 mol % KCl, and 35 mol % K2CO3; E 2: 710°C, 23 mol % KBO2, 43 mol % K2CO3, and 34 mol % K2MoO4; E 3: 710°C, 23 mol % KBO2, 43 mol % K2CO3, and 34 mol % K2WO4. The specific heats of melting of the eutectics were determined.  相似文献   

9.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

10.
K3InF6 is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K2InC10O10H6F9, K3InC12O14H4F18 and K3InC12O12F18. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. The two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K3InF6 by decomposition at high temperature. The crystal structure of K3InC12O14H4F18 is characterized by complex anions [In(CF3COO)4(OHx)2](5−2x)− and isolated [CF3COOH2−x](x−1)− molecules with x=2 or 1, surrounded by K+ cations. The crystal structure of K3InC12O12F18 is only constituted by complex anions [In(CF3COO)6]3− and K+ cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K2InC10O10H6F9 and K3InC12O12F18 were also performed at room temperature on pulverized crystals.  相似文献   

11.
The samples of YBa3B9O18, LuBa3(BO3)3, α-YBa3(BO3)3 and LuBO3 powders have been synthesized by the solid-state reaction methods at high temperature and their X-ray excited luminescent properties were investigated. All the studied materials show a broad emission band in the wavelength range of 300-550 nm with the peak centers at about 385 nm for YBa3B9O18 and LuBa3(BO3)3, 415 nm for α-YBa3(BO3)3 and 360 nm for LuBO3 powders, respectively. Even though those compounds have the different atomic structures, they have the common structural feature of each yttrium or lutetium ion bonded to six separate BO3 groups, i.e., octahedral RE(BO3)6 (RE=Lu or Y) moiety. This octahedral RE(BO3)6(RE=Lu or Y) moiety seems to be an important structural element for efficient X-ray excited luminescence of those compounds, as are the edge-sharing octahedral TaO6 chains for tantalate emission.  相似文献   

12.
This paper examines the structural changes with temperature and composition in the Sc2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Y2O3 and Sc2O3 mixtures. A set of different compositions have been synthesized using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1750 °C during different times. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing very reduced stability fields. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of the components. Although, the XRD data show a complete solid solubility of β-Sc2Si2O7 in β-Y2Si2O7 at 1300 °C, the 29Si MAS-NMR spectra indicate a local structural change at x ca. 1.15 (Sc2−xYxSi2O7) related to the configuration of the Si tetrahedron, which does not affect the long-range order of the β-RE2Si2O7 structure. Finally, it is interesting to note that, although Sc2Si2O7 shows a unique stable polymorph (β), Sc3+ is able to replace Y3+ in γ-Y2Si2O7 in the compositional range 1.86?x?2 (where x is Sc2−xYxSi2O7) as well as in δ-Y2Si2O7 for compositions much closer to the pure Y2Si2O7.  相似文献   

13.
The phase diagrams of the NaBO2-NaCl-Na2CO3, NaBO2-Na2CO3-Na2MoO4, NaBO2- Na2CO3-Na2WO4, and NaBO2-NaCl-Na2WO4 ternary systems were studied by a calculation-experimental method and differential thermal analysis. The coordinates of ternary eutectics were determined: E 1: 612°C, 16 mol % NaBO2, 42 mol % NaCl, and 42 mol % Na2CO3; E 2: 568°C, 12 mol % NaBO2, 28 mol % Na2CO3, and 60 mol % Na2MoO4; E 3: 575°C, 12 mol % NaBO2, 32 mol % Na2CO3, and 56 mol % Na2WO4; E 4: 628°C, 8 mol % NaBO2, 20 mol % NaCl, and 72 mol % Na2WO4; and E 5: 655°C, 9 mol % NaBO2, 53 mol % NaCl, and 38 mol % Na2WO4.  相似文献   

14.
The magnetic ordering of the Fe2P-type Tb6FeTe2, Tb6CoTe2 Tb6NiTe2 and Er6FeTe2 phases (space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. Tb6FeTe2, Tb6CoTe2 and Tb6NiTe2 demonstrate high-temperature ferromagnetic and low-temperature spin reorientation transitions, whereas Er6FeTe2 shows antiferromagnetic transition, only.The Tb6FeTe2 and Tb6NiTe2 phases show same high-temperature collinear ferromagnetic structure, whereas Tb6FeTe2 is the commensurate non-collinear ferromagnet and Tb6NiTe2 is the canted ferromagnetic cone with K1=[0, 0, ±3/10] and K2=[±2/9, ±2/9, 0] wave vectors at 2 K. The magnetic structure of Er6FeTe2 is a flat spiral with K1=[0, 0, ±1/10] at 2 K. The magnetic entropy change for Tb6NiTe2 is ΔSm=−4.86 J/kg K at 229 K for the field change Δμ0H=0-5 T.In addition, novel Fe2P-type Gd6FeTe2, Zr6FeTe2, Hf6FeTe2, Dy6NiTe2, Zr6NiTe2 and Hf6NiTe2 phases have been obtained.  相似文献   

15.
The structural, electronic, and vibrational characteristics and energies of the isolated polyoxide clusters Sc20O30, P20O50, Ti20O30F20, and V20O30F20 and ammonia complexes Sc20O30 · nNH3 were calculated by the density functional theory B3LYP method with several basis sets. The computation results show that a fullerene-like closo structure I h with oxygen bridges located above the midpoints of the edges of an empty [M20] dodecahedron is preferable for the Ti20O30F20 and V20O30F20 clusters with four-coordinate metal atoms protected by the outer M-F bonds. This structure with a cage diameter of ∼1 nm and the diameter of nearly planar decagonal faces (windows) of ∼0.5 nm is stable to dissociation into fragments and to strong geometric distortions and retains its closo shape when molecules like NH3 and anions like H are attached to the cage. An analogous closo structure is favorable for the P20O50 cluster; however, in this structure, the [P20] cage is severely distorted and all 12 windows are strongly corrugated. For Sc20O30, the I h dodecahedron with bare three-coordinate Sc atoms corresponds to a local minimum of the potential energy surface, which is 170–200 kcal/mol less favorable than compact puck-shaped isomers in which four- and five-coordinate metal atoms and three- and four-coordinate oxygen atom prevail. “Solvation” of the dodecahedral and puck-shaped Sc20O30 isomers by ammonia molecules strongly decreases the energy gap between the isomers; however, the dodecahedron I h in all cases remains a high-lying intermediate. According to calculations, most polyoxides under consideration have a high electron affinity (comparable with or higher than that of fullerenes) and is able to add three to five or more alkali-metal atoms to form radical salts in which clusters are in the state of polyanions. Because of large sizes of the [M20] cages and their windows, the interior of the cage (as distinct from fullerenes) can accommodate a considerable number of atoms and several small molecules. The V20O30F20 cluster has 20 unpaired electrons and can be treated as a molecular magnet. The properties of the [M20] cages depend only slightly on the outer substituents. It is suggested that the pattern will be retained upon the substitution of OH groups for the F atoms and that the hydroxo-substituted clusters can bind to each other through hydrogen bridges and serve as building blocks for self-assembly into ordered nanometer and crystalline structures of various dimensions. Original Russian Text ? O.P. Charkin, N.M. Klimenko, D.O. Charkin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 5, pp. 775–785.  相似文献   

16.
The compounds Ba3Re2O9 and Sr3Re2O9 were prepared by the solid state reaction of the corresponding alkaline-earth oxide with ReO3 at 750 to 900°C in sealed, evacuated, fused silica tubes. The two compounds are isostructural, having the nine-layer ABO3 structure with vacant central octahedra. The unit cell parameters are given. The magnetic susceptibility for Ba3Re2O9 indicates Curie-Weiss behavior with a Re6+ moment having localized electrons. The magnetic data for Sr3Re2O9 suggest delocalized electron behavior from its temperature-independent susceptibility. Both compounds appear to have semiconducting properties, but the strontium analog is a better conductor. Both compounds are unstable when heated in air above 400°C. They are readily decomposed by chemical oxidizing agents.  相似文献   

17.
Nanopowders of Bi0.75Er0.25O1.5 and Bi0.75Er0.125Y0.125O1.5 were prepared by a reverse titration chemical coprecipitation method under controlled pH conditions. After calcination at 500 °C for 3 h, powders with grain size in the order of 10 nm were obtained. In order to keep the nanosize of grains, these powders were densified by spark plasma sintering. Samples with relative density higher than 96% were prepared in only 10 min up to 500 °C with an average grain size of 15 and 11 nm for Bi0.75Er0.25O1.5 and Bi0.75Er0.125Y0.125O1.5, respectively. Impedance spectroscopy revealed slightly higher conductivity for the Bi0.75Er0.125Y0.125O1.5 composition compared to Bi0.75Er0.25O1.5 nanoceramic, but performances remained lower than the corresponding Bi0.75Er0.25O1.5 microcrystalline sample. However, mechanical properties of both nanocrystalline ceramics are improved when compared to microcrystalline samples.  相似文献   

18.
The luminescence properties of Cs3Bi2Cl9, α-Cs3Sb2Cl9, and β-Cs3Sb2Cl9 are reported and compared with those of Cs3Bi2Br9. The first two compounds have comparable luminescence properties which can be described in terms of a band model. Deep center emission is observed for both compounds, whereas edge emission is observed only for Cs3Bi2Cl9. The optical transitions of β-Cs3Sb2Cl9 are localized on the Sb3+ ion. The orientation of the lone-pair orbitals of the ns2 ions seems to play an important role in the formation of the cationic valence band. The α-β transformation must therefore have a considerable influence on the spectral properties of Cs3Sb2Cl9.  相似文献   

19.
The electronic and thermal energy differences, ΔE(t-s); enthalpy differences, ΔH(t-s); and free energy differences between the singlet and triplet states, ΔG(t-s), were calculated for C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb at the B3LYP/6-311++G (3df, 2p) level. The singlet-triplet splitting, G s-t, of C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb generally increased from C6H6C toward C6H6Pb. The most stable tautomers and conformers were suggested for the singlet and triplet states of C6H6M (M = C, Si, Ge, Sn and Pb). The geometrical parameters were calculated and discussed. The text was submitted by the authors in English.  相似文献   

20.
The IR and Raman spectra of solid and dissolved S4N4, S4N4H4, S4N4D4 and S3N3Cl3 have been recorded and are assigned according to D2d, C4v and C3v symmetry respectively. In the solid state, many forbidden bands and splittings of degenerate vibrations are observed because of the symmetry lowering in the crystals. Due to the different size and shape of the rings and to strong coupling of the normal modes there is no clear correlation between the SN ring stretching vibrations and the strength of the SN bonds, except for the one of the E modes. However, the stretching force constant show the trend expected from changes in interatomic distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号