首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Samples in the system Lu2−xYxSi2O7 (0?x?2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu2Si2O7 and Y2Si2O7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y2Si2O7 in β-Lu2Si2O7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Y2Si2O7 and the results compare favorably with the values obtained experimentally.  相似文献   

2.
This paper examines the structural changes with temperature and composition in the Yb2Si2O7-Y2Si2O7 system; members of this system are expected to form in the intergranular region of Si3N4 and SiC structural ceramics when sintered with the aid of Yb2O3 and Y2O3 mixtures. A set of different compositions have been synthesised using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1650 °C during different times. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of Yb2Si2O7 in β-Y2Si2O7 and γ-Y2Si2O7. Although Yb2Si2O7 shows a unique stable polymorph (β), Yb3+ is able to replace Y3+ in γ-Y2Si2O7 and δ-Y2Si2O7 at high temperatures and low Yb contents. IR results confirm the total solid solubility in the system and suggest a constant SiOSi angle of 180° in the Si2O7 unit across the system. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β-RE2Si2O7 polymorph, with γ-RE2Si2O7 and δ-RE2Si2O7 showing reduced stability fields. The diagram is in accordance with Felsche's diagram if average ionic radii are assumed for the members of the solid solution at any temperature, as long as the β-γ phase boundary is slightly shifted towards higher radii.  相似文献   

3.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K.  相似文献   

4.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

5.
The silicate compounds Sc2Si2O7 and In2Si2O7 have been converted from thortveitite type to pyrochlore type at 1000°C, 120 kbar, with resulting cell constants of 9.287(3) and 9.413(3) Å, respectively. Invariant reflection intensities in the X-ray powder diffraction patterns allowed precise absorption corrections to be made, and refinement of thermal parameters and of the single structural parameter x gave values of 0.4313(21) and 0.4272(15), respectively. The corresponding six-coordinate SiO distances were 1.761(7) and 1.800(5) Å, and the average eight-coordinate distances for ScO8 and InO8 were 2.267 and 2.275 Å. Values of structure-refined bond lengths for compounds containing six-coordinate silicon are surveyed, and overall weighted average octahedral distances of 1.782(14) Å for SiO and 2.520(18) Å for OO are derived. Pyrochlore phases were not produced from rare-earth disilicate or monosilicate phases subjected to the same reaction conditions as the Sc and In compounds.  相似文献   

6.
Zn7Sb2O12 forms a full range of Co-containing α solid solutions, Zn7−xCoxSb2O12, with an inverse-spinel structure at high temperature. At low temperatures for x<2, the solid solutions transform into the low temperature β-polymorph. For x=0, the βα transition occurs at 1225±25 °C; the transition temperature decreases with increasing x. At high x and low temperatures, α solid solutions are formed but are non-stoichiometric; the (Zn+Co):Sb ratio is >7:2 and the compensation for the deficiency in Sb is attributed to the partial oxidation of Co2+ to Co3+. From Rietveld refinements using ND data, Co occupies both octahedral and tetrahedral sites at intermediate values of x, but an octahedral preference attributed to crystal field stabilisation, causes the lattice parameter plot to deviate negatively from the Vegard's law. Sub-solidus compatibility relations in the ternary system ZnO-Sb2O5-CoO have been determined at 1100 °C for the compositions containing ?50% Sb2O5.  相似文献   

7.
A sub-solidus phase evolution study was done in CeO2-Sc2O3 and CeO2-Lu2O3 systems under slow-cooled conditions from 1400 °C. Long-range order probing of X-ray diffraction technique is utilized in conjunction with the ability of Raman spectroscopy to detect the changes in local co-ordination. Lu2O3 showed solubility of 30 mol% in CeO2, thus forming an anion deficient fluorite-type (F-type) solid solution, whereas Sc2O3 did not show any discernible solubility. A biphasic region (F+C) was unequivocally detected by Raman spectroscopy in Ce1−xLuxO2−x/2 (0.4?x?0.9) and in Ce1−xScxO2−x/2 (0.1?x?0.9) systems. Raman spectroscopy was valuable in studying these systems since oxygen vacancies are created on doping RE2O3 into ceria and Raman spectroscopy is very much sensitive to oxygen polarizability and local coordination. Back scattered images collected on representative compositions support the above-mentioned results.  相似文献   

8.
17O MAS NMR and XRD studies of precursor-derived Y1.6Zr0.4Ti2O7.2 and Y1.2Zr0.8Ti2O7.4 have been performed to investigate the development of local and long-range order in these materials as they evolve from a metastable amorphous state upon heating. Zirconium titanate (ZrTiO4) was also investigated to help interpret the 17O NMR spectra of the ternary compositions. Consistent with earlier studies, crystallization was observed at 800 °C to form a fluorite structure and a small amount of rutile; weak broad reflections were also observed which were ascribed to the presence of small pyrochlore-like ordered domains or particles within the fluorite phase. As the temperature was increased further, the sizes of these domains grew along with the concentration of rutile. At the highest temperature studied (1300 °C), the reflections of the thermodynamic phases, pyrochlore and zirconium titanate (ZrTiO4), dominated the XRD pattern. The 17O NMR spectra revealed a series of different peaks that were assigned to different 3- and 4-coordinate O local environments. The data were consistent with the formation of a metastable phase Y2−xZrxTi2−yZryO7+x with pyrochlore-like ordering but with Zr substitution on both cation sites of the pyrochlore structure. At low temperatures, doping on the A (Y3+) sites predominates (i.e., x>y), consistent with the fact that the pyrochlore develops out of a more disordered fluorite-like, phase. As the temperature is raised, the Zr doping on the A site decreases and the metastable phase at this temperature can now be written as Y2−xZrxTi2−yZryO7+x (i.e., x′<y′); TiO2 is also observed, consistent with this suggestion. At high temperatures, doping on the B site decreases and the resonances due to the stoichiometric pyrochlore yttrium titanate (Y2Ti2O7) dominate the NMR spectra. Weaker 17O NMR resonances due zirconium titanate (ZrTiO4) are also observed.  相似文献   

9.
The hydrothermal synthesis, crystal structure and magnetic properties of the new copper silicate Na2Cu5(Si2O7)2, are reported. The crystal structure was determined through synchrotron powder diffraction data. The unit cell was indexed to a triclinic cell, space group P-1 (n° 2) with unit cell parameters a=5.71075(2) Å, b=7.68266(3) Å, c=7.96742(3) Å, α=64.2972(2)°, β=88.4860(2)° and γ=70.5958(2)° with Z=1. A structural model was obtained through a combination of a direct-space Monte-Carlo approach and Rietveld refinement. The crystal structure contains parallel chains consisting of zig-zag copper dimers and trimers. All silicon atoms are present as part of a [Si2O7]6− anion that connects the chains; therefore the compound belongs to the sorosilicate mineral family. The magnetic susceptibility was measured and shows a behavior typical of one-dimensional ferrimagnetism, in agreement with the observed structure.  相似文献   

10.
Three rare earth borosilicate oxyapatites, RE5Si2BO13 (RE=La, Gd, Y), were synthesized via wet chemical method, of which RE5Si2BO13 (RE=Gd, Y) were first reported in this work. In the three oxyapatites, [BO4] and [SiO4] share the [TO4] tetrahedral oxyanion site, and RE3+ ions occupy all metal sites. The differential scanning calorimetry-thermo gravimetry measurements and high temperature powder X-ray diffraction pattern revealed a vitrification process within 300-1200 °C, which was due to the glass-forming nature of borosilicates. From the VUV excitation spectra of Eu3+ and Tb3+ in RE5Si2BO13, the optical band gaps were found to be 6.31, 6.54 and 6.72 eV for RE5Si2BO13 (RE=La, Gd, Y), respectively. The emission and excitation bands of Eu3+ and Tb3+ are discussed relating with their coordination environments. Among the three hosts, Y5Si2BO13 would be the best for Eu3+ and Tb3+-doped phosphors.  相似文献   

11.
This paper describes the 89Y MAS-NMR spectra for all the established polymorphs of Y2Si2O7 (y, α, β, γ and δ) and Y2SiO5 (X1 and X2). The combination of our spectroscopic data with the structural information published up to now from diffraction data permits the revision and correction of mistakes which appear in the literature. Finally, the influence of different structural factors, such as yttrium coordination number and Y-O distances on the 89Y NMR isotropic chemical shift is analyzed.  相似文献   

12.
Undoped and RE ions doped SrB2Si2O8 were successfully synthesized. After the application of UV and VUV spectroscopy measurements, we made a novel discovery that the emission of SrB2Si2O8:Eu prepared in air can be switched between red and blue by the different excitations. The information is that quite a part of Eu3+ was spontaneously reduced to Eu2+ in air. The PL properties of Eu2+ in VUV and Eu3+, Ce3+ and Tb3+ in UV-VUV region in SrB2Si2O8 were evaluated for the first time. The excitation mechanisms of the O2−-Eu3+ CT, Ce3+f-d and Tb3+f-d transitions in UV region as well as the Eu3+f-d, O2−-Ce3+ CT, O2−-Tb3+ CT transitions and the host lattice absorption in VUV region were established. In addition, first principles calculation within the LDA of the DFT was applied to calculate the electronic structure and linear optical properties of SrB2Si2O8 and the results were compared with the experimental data.  相似文献   

13.
High-pressure synthesis experiments in the system Na2O-Y2O3-SiO2 revealed the existence of a previously unknown polymorph of NaYSi2O6 or Na3Y3[Si3O9]2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi2O6 crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å3, R(|F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si3O9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.  相似文献   

14.
Powders of calcium yttrium silicate, Ca3Y2(Si3O9)2, containing 0.1-3% Tb3+ were prepared using a sol-gel method and characterized with XRD, IR, UV-vis and UV-VUV spectroscopies at room temperature and 10 K. Structural analysis revealed pure monoclinic phase of Ca3Y2(Si3O9)2 after heat-treatment at 1000 °C. Infrared spectroscopy showed that between 800 and 900 °C a short-range structural organization of the components proceeded, yet without crystallization. A strong emission of Tb3+ had been observed both in the green part of the spectrum due to the 5D47FJ transitions and in the blue-violet region owing to the 5D37FJ radiative relaxation. The color of the light could be tuned from yellowish-green to bluish-white both by means of the dopant content and the temperature of synthesis. Efficient luminescence of Tb3+-doped Ca3Y2(Si3O9)2 phosphors could also be obtained upon stimulation with vacuum ultraviolet synchrotron radiation demonstrating that an energy transfer from the host to the Tb3+ ions takes place.  相似文献   

15.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

16.
A serial of samples in Y2O3-Ga2O3-Tm2O3 pseudo-ternary system are prepared by solid-state chemical reaction method. The range of solid solution in (Y1−xTmx)3GaO6 is 0<x<0.384. Powder X-ray diffraction shows that the compounds crystallize in Gd3GaO6 (Cmc21)-type structure. The solid solubilities of Y3+xGa5−xO12 (x=0-0.77) and Tm3+xGa5−xO12 (x=0-0.62) are 37.5-47.11 at% Y2O3, and 37.5-45.26 at% Tm2O3, respectively. PL spectra of Tm-doped Y3GaO6 show that there is a sharp blue emission at ∼456 nm from the 1D23F4 transition at room temperatures with two lifetimes (∼5 and ∼15 μs) and a narrow saturation range of PL intensity for the Tm3+ content from x=0.005 to 0.03. The sharp emission and long lifetime of (Y1−xTmx)3GaO6 indicate that Y3GaO6 is a potential phosphor and laser crystal host material.  相似文献   

17.
Among other alkaline-earth aluminates, the monoclinic (M) polymorph of SrAl2O4 can be used as host material for Eu2+ luminescence based phosphors. With the aim of reducing the synthesis temperature of this polymorph, we have produced and characterized by XRD and Raman scattering solid solutions of the SrAl2−xBxO4 system (x?0.3) obtained by two different methods, a ceramic route and a modified sol-gel synthesis. Though the addition of boron lowers the temperature of obtention of the M polymorph in both type of samples, lower B contents are needed to stabilize the M form as single phase for samples prepared by the sol-gel method than through the ceramic route. In the sol-gel method, the M polymorph can be obtained at temperatures as low as 1200 °C, with a Boron content of just 1%. Rietveld profile analysis allows us to conclude that coexistence of the monoclinic and hexagonal polymorphs of SrAl2O4 occurs for samples synthesized below an onset temperature of about 1000-1100 °C, that depends on the sample composition. Above those temperatures, only the monoclinic phase is formed.  相似文献   

18.
The quaternary rare-earth phosphides RECuZnP2 (RE=Pr, Nd, Gd-Tm, Lu) have been prepared by reaction of the elements at 900 °C, completing this versatile series which forms for nearly all RE metals. They adopt the trigonal CaAl2Si2-type structure (Pearson symbol hP5, space group P3?m1, Z=1), as confirmed by single-crystal X-ray diffraction analysis on ErCuZnP2 and powder X-ray diffraction analysis on the remaining members. The Cu and Zn atoms are assumed to be disordered over the single transition-metal site. Band structure calculations on a hypothetically ordered YCuZnP2 model suggest a semimetal, with a zero band gap between the valence and conduction bands. This electronic structure is supported by XPS valence band spectra for RECuZnP2 (RE=Gd-Er), in which the intensity drops off smoothly at the Fermi edge. The absence of a band gap permits the electron count to deviate from the precise value of 16 e per formula unit, as demonstrated by the formation of a solid solution in GdCuxZn2−xP2 (1.0≤x≤1.3), while still retaining the CaAl2Si2-type structure. Because the Cu 2p XPS spectra indicate that the Cu atoms are always monovalent, the substitution of Cu for Zn leads to a decrease in electron count and a lowering of the Fermi level in the valence band. The magnetic susceptibility of RECuZnP2 (RE=Gd-Er), which obeys the Curie-Weiss law, confirms the presence of trivalent RE atoms.  相似文献   

19.
Magnetic properties of Mn2V2O7 single crystals are investigated by means of magnetic susceptibility, magnetization, and heat capacity measurements. A structural phase transition of the α-β forms is clearly observed at the temperature range of 200-250 K and an antiferromagnetic ordering with magnetic anisotropy is observed below 20 K. A spin-flop transition is observed with magnetic field applied along the [110] axis of β-Mn2V2O7, of which corresponds to the [001] axis of α-Mn2V2O7, suggesting that the spins of Mn2+ ions locate within honeycomb layers which point likely in the [110] direction of β-Mn2V2O7 or the [001] axis of α-Mn2V2O7. However, a rather small jump of magnetization at spin-flop transition suggests a possible partition of crystal to some domains through β-to-α transition on cooling or much complex spin structure in honeycomb lattice with some frustration.  相似文献   

20.
The first lanthanum fluoride borate La4B4O11F2 was obtained in a Walker-type multianvil apparatus at 6 GPa and 1300 °C. La4B4O11F2 crystallizes in the monoclinic space group P21/c with the lattice parameters a=778.1(2) pm, b=3573.3(7) pm, c=765.7(2) pm, β=113.92(3)° (Z=8), and represents a new structure type in the class of compounds with the composition RE4B4O11F2. The crystal structure contains BO4-tetrahedra interconnected with two BO3-groups via common vertices, B2O5-pyroborate units, and isolated BO3-groups. The structure shows a wave-like modulation along the b-axis. The crystal structure and properties of La4B4O11F2 are discussed and compared to Gd4B4O11F2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号