首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescence properties of La3WO6Cl3 are reported and discussed. The tungstate group occurs as a trigonal prismatic WO6?6 complex. The blue luminescence is, for the greater part, quenched at room temperature. No energy migration occurs in this lattice. The decay times are discussed in terms of a simple molecular-orbital (MO) scheme. The luminescence of the following activating ions was studied: Mo6+, Bi3+, Eu3+, Sm3+, Ce3+, and Tb3+. The molybdate group produces a red emission with low efficiency. The Bi3+ ion induces a narrow band emission with small Stokes shift. This is interpreted using a Bi3+O2?W6+ charge-transfer state. Except for Ce3+, the rare earth activators show luminescence, but the total transfer efficiency from tungstate to the rare-earth ions is low. This is not due to the one-step tungstate-rare-earth transfer (which is efficient), but to the localized nature of the tungstate excitation. The Eu3+ charge-transfer band is at very low energies.  相似文献   

2.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

3.
用基于第一性原理的密度泛函理论方法,对Cs3Bi2X9(X=Cl、Br、I)的光电特性进行理论计算,并系统阐述这3种晶体的表面效应对光电性能的影响。结果表明,3种材料的光学特性由铋原子和卤素原子最外层p轨道上的价电子主导。在可见光区中,材料的吸收峰会随卤素原子序数的增加呈现红移,其中一维结构的Cs3Bi2Cl9表面结构在光吸收能力上尤为特别且敏感;二维结构的Cs3Bi2Br9光吸收能力会受厚度影响;零维结构的Cs3Bi2I9非常稳定,且几乎不受表面特性和晶体厚度的影响。  相似文献   

4.
用基于第一性原理的密度泛函理论方法,对Cs3Bi2X9(X=Cl、Br、I)的光电特性进行理论计算,并系统阐述这3种晶体的表面效应对光电性能的影响。结果表明,3种材料的光学特性由铋原子和卤素原子最外层p轨道上的价电子主导。在可见光区中,材料的吸收峰会随卤素原子序数的增加呈现红移,其中一维结构的Cs3Bi2Cl9表面结构在光吸收能力上尤为特别且敏感;二维结构的Cs3Bi2Br9光吸收能力会受厚度影响;零维结构的Cs3Bi2I9非常稳定,且几乎不受表面特性和晶体厚度的影响。  相似文献   

5.
The crystal growth of Cs2NaYCl6 doped with Bi3+ is described and its luminescence properties reported and discussed.  相似文献   

6.
Magnetic susceptibility of Cs3Cr2Cl9 as a single crystal is studied in the temperature range 4.2–77 K. A maximum is obtained at 25 ± 1 K. These experimental data are interpreted by considering the isotropic exchange interaction between two spin quadruplets. The exchange constant J is found to be equal to - 13 cm?1.  相似文献   

7.
We described herein a facile solution-phase route to three nanocrystals of antimony oxychlorides and oxides (Sb4O5Cl2, Sb8O11Cl2, and Sb2O3), whose morphologies and phases were varied with the pH value of a reaction mixture or composition of a mixed solvent. In particular, the solvent composition controlled the selective preparation of cubic Sb2O3 (senarmontite) and orthorhombic Sb2O3 (valentinite). Both cubic and orthorhombic Sb2O3 samples exhibited strong emission properties.  相似文献   

8.
The valence band (VB) density of states and the binding energies of the weakly bound core levels have been measured by XUV photoelectron spectroscopy using synchrotron radiation for four V–VI layered compounds. Chemical shifts of the core levels are determined which support the partial ionicity of the bonds involved. The chemical shifts of the emission from two unequivalent crystal sites were shown to differ by less than 30 meV for the compounds Bi2Te3, Bi2Se3 and Sb2Te3.VB and core-level photoemission spectra for the V–VI compounds Bi2Te3, Bi2Se3, Sb2Te3 and Se2Te2Se have been presented. Chemical shifts of the Te 4d, Bi 5d, Sb 4d and Se 3d levels were determined, indicating partial ionicity of the mainly covalent bonds involved. Chemical-shift differences originating from atoms at two different crystal sites are <30 meV. In a simple model this implies that similar charge transfers do occur even though completely different bond orbitals were proposed for the and the AB(2) bonds. Finally, the fact that no surface core-level shifts were observed tends to confirm the very weak influence of the van der Waals-like bonds on the B(2) atoms.  相似文献   

9.
The emission spectra of microcrystalline Cs2NaTbCl6 and Cs2Na(Y0.99Tb0.01)Cl6 have been measured at room temperature and at 77 K. The crystal structures of these compounds are face-centered cubic and the terbium (III) ions lie at sites of octahedral (Oh) symmetry surrounded by six chloride ions. Emission is observed from both the 5D3 and 5D4 excited states of Tb3+. Assignments have been made for nearly all of the magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions. These assignments are based on the calculated transition energies and relative magnetic-dipole strengths and intensities obtained from a weak-field crystal-field analysis of octahedral TbCl63? units. Magnetic-dipole lines dominate the spectra for transitions of ΔJ = ±1 free-ion parentage, whereas both magnetic-dipole lines and vibronically induced electric-dipole lines contribute significantly to the emission intensities of the ΔJ = 0, ±2 transitions. The crystal-field sub-levels of both 5D3 and 5D4 appear to reach a Boltzmann thermal equilibrium prior to emission. Emission from 5D3 is partially quenched in going from low temperature to high temperature and in going from Cs2NaYCl6: Tb3+ (1%) to Cs2NaTbCl6.This study has led to the identification and assignment of nearly all of the pure magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions in crystal-line Cs2NaTbCl6. The assignments were based on calculated transition energies and relative magnetic-dipole strengths (and intensities) obtained from a (weak-field) crystal-field analysis of octahedral (Oh) TbCl63? clusters. Excellent agreement between the calculated and observed relative intensities of the magnetic-dipole lines was achieved by assuming a Boltzmann equilibrated set of crystal-field sub-levels for both the 5D4 and 5D3 emitting states. Furthermore, the experimental results suggest that 5D45D3 relaxation is temperature-dependent.The energy levels calculated and displayed in table 1 appear to be qualitatively correct and are in semiquantitative agreement with the emission results (as interpreted in section 4). Calculated and observed transition energies for the assigned magnetic-dipole transitions generally agree to within 0.2%.One of the most remarkable features of the emission spectra obtained on Cs2NaTbCl6 is the absence of any vibrational structure in the ΔJ = ± 1 transitions (7F6, 7F35D4 and 7F4, 7F25D3), and the presence of extensive vibrational structure in the ΔJ = O, ±2 transitions (7F6, 7F4, 7F25D4). If other than OO vibronic transitions do contribute to the ΔJ = ±1 emissions, their intensities must be at least two or three orders-of-magnitude weaker than the OO magnetic-dipole lines. Vibronically induced electric-dipole transitions appear, however, to make substantial contributions to the 7F6, 7F4, 7F25D4 emission spectra. A clear-cut theoretical explanation for the absence of vibrational structure in the ΔJ = ±1 transitions is not readily apparent. We are presently examining this problem in greater detail.  相似文献   

10.
We present the controlled solution-phase synthesis of several sheet- or rod-like bismuth oxides, BiOCl, Bi12O17Cl2, α-Bi2O3 and (BiO)2CO3, by adjusting growth parameters such as reaction temperature, mole ratios of reactants, and the base used. BiOCl, Bi12O17Cl2, and α-Bi2O3 could be prepared from BiCl3 and NaOH, whereas (BiO)2CO3 was prepared from BiCl3 and urea. BiOCl and Bi12O17Cl2 could also be prepared from BiCl3 and ammonia. The α-Bi2O3 sample exhibited strong emission at room temperature.  相似文献   

11.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

12.
The synthesis and crystal structure of Cs3Mn[Nb6Cl9O3(CN)6]0.6H2O are described in this work. It crystallizes in the cubic system (space group Fm-3m; a=15.708(5) Å) and is characterized by a static orientational disorder of the [Nb6Cl9O3(CN)6]5− cluster units. It results in a framework structurally related to that encountered in the well known Prussian Blue family prepared for different hexacyanometallates. The charge of the framework is compensated by cesium cations that are located in the tetrahedral cavities of the c.f.c. lattice of units along with water molecules. We will evidence the features that act in the crystallization of solid state compounds built up from ordered or disordered units as well as the influence of orientational disorder on interatomic distances obtained from single-crystal X-ray diffraction investigations.  相似文献   

13.
The luminescence of undoped and rare-earth-doped LaNb3O9 is reported. The two modifications (α and β) show striking differences. Whereas undoped β-LaNb3O9 does not luminesce at all (down to 4.2 K), α-LaNb3O9 emits efficiently with a quenching temperature of 250 K. Energy transfer from niobate to rare-earth dopants is observed for the α, but not for the β modification. The rare-earth dopant emission consists of sharp lines for the α modification, but is considerably broadened for the β modification. The luminescence properties are discussed in terms of the crystal structure. In addition results for α-NbPO5 will be given.  相似文献   

14.
Results of electrical conductivity measurements, thermal analysis, and X-ray diffraction studies indicate the existence of four phases, between 295 K and the melting points, in the system (Cs1?yRby)Cu4Cl3I2. These phases are designated α, á β, γ in order of decreasing temperature. The α phase is isostructural with α-RbAg4I5; the á phase is also cubic and very likely belongs to space groupP213, a subgroup ofP4132 andP4332 to which the α phase belongs. There is a high probability that the á → α transition is continuous. The á → α transition is not discernible in the conductivity measurements or thermal analysis; therefore the line of á-α transitions is presently unknown. The β phase transforms to the á and the γ phase transforms to the β phase wheny ≤ 0.36; the γ phase transforms to the α phase wheny ≥ 0.36. That is, there is a triple point aty = 0.36, T = 399K. The γ-β, β-α′, and γ-α transitions are all hysteretic and are therefore first order. The conductivities of the β phases are relatively low and the enthalpies of activation relatively high. The conductivity of the β phase decreases with increasingy. The β phase probably belongs to space groupR3, in which the Cu+ ions can be ordered. The α and á phases are the true solid electrolytes; the conductivities are high, >0.73 Ω?1cm?1 at 419 K, and the enthalpies of activation of motion of the Cu+ ions low, 0.11 eV.In the system CsCu4Cl3(I2?xClx), 0 ≤ x ≤ 0.25, the Cl? for I? substitutions affect the transitions to only a small extent relative to the stoichiometric compound. The β phase occurs for allx and transforms to á.  相似文献   

15.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射谱和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6发出中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

16.
Single crystals of the title compounds were prepared using a BaCl2 flux and investigated by X-ray diffraction methods using MoKα radiation and a charge coupled device (CCD) detector. The crystal structures of these two new compounds were solved and refined in the hexagonal symmetry with space group P63/mmc, a=5.851(1) Å, c=25.009(5) Å, ρcal=4.94 g cm−3, Z=2 to a final R1=0.069 for 20 parameters with 312 reflections for Ba5Ru2Cl2O9 and space group , a=5.815(1) Å, c=14.915(3) Å, ρcal=5.28 g cm−3, Z=1 to a final R1=0.039 for 24 parameters with 300 reflections for Ba6Ru3Cl2O12. The structure of Ba5Ru2Cl2O9 is formed by the periodic stacking along [001] of three hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The BaO3 stacking creates binuclear face-sharing octahedra units Ru2O9 containing Ru(V). The structure of Ba6Ru3Cl2O12 is built up by the periodic stacking along [001] of four hexagonal close-packed BaO3 layers separated by a double layer of composition Ba2Cl2. The ruthenium ions with a mean oxidation degree +4.67 occupy the octahedral interstices formed by the four layers hexagonal perovskite slab and then constitute isolated trinuclear Ru3O12 units. These two new oxychlorides belong to the family of compounds formulated as [Ba2Cl2][Ban+1RunO3n+3], where n represents the thickness of the octahedral string in hexagonal perovskite slabs.  相似文献   

17.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6材料发射中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

18.
Crystal field parameter for cubic Cs2NaEuxY1?xCl6 (with x = 0.01) are reported. The values are A04 = 225 cm?1 and A06 = 15 cm?1.  相似文献   

19.
Lead-free halide double perovskites are currently gaining significant attention owing to their exceptional environmental friendliness, structural adjustability as well as self-trapped exciton emission. However, stable and efficient double perovskite with multimode luminescence and tunable spectra are still urgently needed for multifunctional photoelectric application. Herein, holmium based cryolite materials (Cs2NaHoCl6) with anti-thermal quenching and multimode photoluminescence were successfully synthesized. By the further alloying of Sb3+ (s-p transitions) and Yb3+ (f-f transitions) ions, its luminescence properties can be well modulated, originating from tailoring band gap structure and enriching electron transition channels. Upon Sb3+ substitution in Cs2NaHoCl6, additional absorption peaking at 334 nm results in the tremendous increase of photoluminescence quantum yield (PLQY). Meanwhile, not only the typical NIR emission around 980 nm of Ho3+ is enhanced, but also the red and NIR emissions show a diverse range of anti-thermal quenching photoluminescence behaviors. Furthermore, through designing Yb3+ doping, the up-conversion photoluminescence can be triggered by changing excitation laser power density (yellow-to-orange) and Yb3+ doping concentration (red-to-green). Through a combined experimental-theoretical approach, the related luminescence mechanism is revealed. In general, by alloying Sb3+/Yb3+ in Cs2NaHoCl6, abundant energy level ladders are constructed and more luminescence modes are derived, demonstrating great potential in multifunctional photoelectric applications.  相似文献   

20.
The crystal structure of [Bi2Cl10(H2-Norf)4(H2O)8] (1) comprises [H2-Norf]^ cations and [Bi2Cl10]4^- anions, that are loosely associated via H-bonding interactions, as well as water molecules that also participate in H-bonding interactions. Strong blue-fluorescent emission of 1 at solid state is observed at the room temperature. CCDC:238237.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号