首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of ZnO films with TiO2 buffer on Si (1 0 0) substrates were prepared by DC reactive sputtering. Growth temperature of TiO2 buffer changed from 100 °C to 400 °C, and the influence on the crystal structures and optical properties of ZnO films have been investigated. The XRD results show that the ZnO films with TiO2 buffer have a hexagonal wurtzite structure with random orientation, and with the increase of growth temperature of TiO2 buffer, the residual stresses were released gradually. Specially, the UV emission enhanced distinctly and FWHMs (full width half maximum) decreased linearly with the increasing TiO2 growth temperature. The results all come from the improvement of crystal quality of ZnO films.  相似文献   

2.
Titanium dioxide thin films have been prepared from tetrabutyl-orthotitanate solution and methanol as a solvent by sol-gel dip coating technique. TiO2 thin films prepared using a sol-gel process have been analyzed for different annealing temperatures. Structural properties in terms of crystal structure were investigated by Raman spectroscopy. The surface morphology and composition of the films were investigated by atomic force microscopy (AFM). The optical transmittance and reflectance spectra of TiO2 thin films deposited on silicon substrate were also determined. Spectroscopic ellipsometry study was used to determine the annealing temperature effect on the optical properties and the optical gap of the TiO2 thin films. The results show that the TiO2 thin films crystallize in anatase phase between 400 and 800 °C, and into the anatase-rutile phase at 1000 °C, and further into the rutile phase at 1200 °C. We have found that the films consist of titanium dioxide nano-crystals. The AFM surface morphology results indicate that the particle size increases from 5 to 41 nm by increasing the annealing temperature. The TiO2 thin films have high transparency in the visible range. For annealing temperatures between 1000 and 1400 °C, the transmittance of the films was reduced significantly in the wavelength range of 300-800 nm due to the change of crystallite phase and composition in the films. We have demonstrated as well the decrease of the optical band gap with the increase of the annealing temperature.  相似文献   

3.
Pd2+-doped ZnO nanotetrapods were prepared and studied for the humidity detection application. The humidity sensors developed were featured by combination of a quartz crystal microbalance (QCM) as a transducer and Pd2+-doped ZnO nanotetrapods as a sensing element. The ZnO nanotetrapods were synthesized by evaporating highly pure zinc pellets (99.999%) at 900 °C in air and PdCl2 was doped on by traditional solution mixing process. Then the mixed solution distributed onto the electrode surfaces of the quartz crystal at room temperature. Pd2+-doped ZnO nanotetrapods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results indicated that the response of the sensors varied with the different dosage PdCl2. Linear regression algorithm was used for evincing the highly linear behavior of the Pd2+-doped ZnO nanotetrapods sensor. In this humidity sensing system, the Pd2+-doped ZnO nanotetrapods sensing material coated on the gold electrode of QCM showed good sensitivity (∼74.24324 Hz/%RH (relative humidity)), reproducibility, linearity (R2 = −0.98834), short response and recovery time (less than 5 s).  相似文献   

4.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

5.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

6.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

7.
dc reactive magnetron sputtering technique was employed for deposition of tantalum oxide films on quartz and silicon substrates by sputtering of pure tantalum target in the presence of oxygen and argon gases under various substrate temperatures in the range 303-973 K. The variation of cathode potential with the oxygen partial pressure was systematically studied. The influence of substrate temperature on the chemical binding configuration, crystal structure and optical properties was investigated. X-ray photoelectron spectroscopic studies indicated that the films formed at oxygen partial pressures ≥1 × 10−4 mbar were stoichiometric. The Fourier transform infrared spectroscopic studies revealed that the films formed up to substrate temperatures <673 K showed a broad absorption band at 750-1000 cm−1 and a sharp band at 630 cm−1 indicated the presence of amorphous phase while at higher substrate temperatures the appearance of bands at about 810 and 510 cm−1 revealed the polycrystalline nature. The effect of substrate temperature on the electrical characteristics of Al/Ta2O5/Si structure was investigated. The dielectric constant values were in the range 17-29 in the substrate temperature range of 303-973 K. The current-voltage characteristics showed modified Poole-Frenkel conduction mechanism with a tendency for reduction of the compensation level. The optical band gap of the films decreased from 4.44 to 4.25 eV and the refractive index increased from 1.89 to 2.25 with the increase of substrate temperature from 303 to 973 K.  相似文献   

8.
TiO2 and TiO2/ZnO double layer films were sputtered on glass substrates. It was found that a thin ZnO underlayer is helpful for tailoring the microstructure and surface morphology of the TiO2 film. By applying a 70-nm-thick ZnO underlayer, a TiO2 thin film of 100 nm in thickness with well crystallized anatase phase and rough surface was successfully fabricated without heating the substrate. Relatively high photo-catalytic activity and good hydrophilic properties were observed in such TiO2/ZnO double layer films.  相似文献   

9.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

10.
Ga doped ZnO (GZO) thin films were deposited on glass substrates at room temperature by continuous composition spread (CCS) method. CCS is thin films growth method of various GaxZn1−xO(GZO) thin film compositions on a substrate, and evaluating critical properties as a function position, which is directly related to material composition. Various compositions of Ga doped ZnO deposited at room temperature were explored to find excellent electrical and optical properties. Optimized GZO thin films with a low resistivity of 1.46 × 10−3 Ω cm and an average transmittance above 90% in the 550 nm wavelength region were able to be formed at an Ar pressure of 2.66 Pa and a room temperature. Also, optimized composition of the GZO thin film which had the lowest resistivity and high transmittance was found at 0.8 wt.% Ga2O3 doped in ZnO.  相似文献   

11.
In this work, thin ZnO films have been produced by pulsed laser deposition on side-polished fiber for optical gas sensor applications. The influence was investigated of the processing parameters, such as substrate temperature and oxygen pressure applied during deposition, on the sensitivity to ammonia of the sensing element. A shift of the spectral position of the resonance minimum to the longer wavelengths was observed at room temperature for the sample prepared at 150 °C substrate temperature and 20 Pa oxygen pressure. Spectral changes in the range 0.16-1.13 nm for NH3 concentrations between 500 and 5000 ppm were also observed.  相似文献   

12.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

13.
The effects of O2 plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. Ga-doped ZnO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion of PET substrate, O2 plasma pretreatment process was used prior to GZO sputtering. With increasing O2 plasma treatment time, the contact angle decreases and the RMS surface roughness increases significantly. The transmittance of GZO films on PET substrate in a wavelength of 550 nm was 70-84%. With appropriate O2 plasma treatment, the resistivity of GZO films on PET substrate was 3.4 × 10−3 Ω cm.  相似文献   

14.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

15.
Zinc oxide/molybdenum-doped indium oxide/zinc oxide (ZnO/IMO/ZnO) multilayer thin films are grown using pulsed laser deposition technique. The effect of substrate temperature on structural, optical, and electrical properties of multilayer films is studied. It is observed that films grown at high substrate temperature are oriented along (0 0 2) and (2 2 2) direction for ZnO and IMO respectively. The crystallinity of these films increases with increase in substrate temperature. It is also seen that conductivity, carrier concentration, and mobility increase with increase in temperature. The multilayer film grown at 500 °C has low resistivity (7.67 × 10−5 Ω cm), high carrier concentration (3.90 × 1020 cm−3), and high mobility (209 cm2/Vs).  相似文献   

16.
ZnO/SiO2 thin films were fabricated on Si substrates by E-beam evaporation with thermal retardation. The as-prepared films were annealed for 2 h every 100 °C in the temperature range 400-800 °C under ambient air. The structural and optical properties were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and photoluminescence (PL). The XRD analysis indicated that all ZnO thin films had a highly preferred orientation with the c-axis perpendicular to the substrate. From AFM images (AFM scan size is 1 μm×1 μm), the RMS roughnesses of the films were 3.82, 5.18, 3.65, 3.40 and 13.2 nm, respectively. PL measurements indicated that UV luminescence at only 374 nm was observed for all samples. The optical quality of the ZnO film was increased by thermal retardation and by using an amorphous SiO2 buffer layer.  相似文献   

17.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

18.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

19.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

20.
This study investigated the optical and electrical properties of Nb-doped TiO2 thin films prepared by pulsed laser deposition (PLD). The PLD conditions were optimized to fabricate Nb-doped TiO2 thin films with an improved electrical conductivity and crystalline structure. XRD analyses revealed that the deposition at room temperature in 0.92 Pa O2 was suitable to produce anatase-type TiO2. A Nb-doped TiO2 thin film attained a resistivity as low as 6.7 × 10−4 Ω cm after annealing at 350 °C in vacuum (<10−5 Pa), thereby maintaining the transmittance as high as 60% in the UV-vis region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号