首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
Molybdenum oxide (MoO3) films were deposited on glass and (1 1 1) silicon substrates by sputtering of metallic molybdenum target in an oxygen partial pressure of 2 × 10−4 mbar and different substrate temperatures in the range 303-623 K using dc magnetron sputtering technique. X-ray photoelectron spectrum of the films formed at 303 K showed asymmetric Mo 3d5/2 and Mo 3d3/2 peaks due to the presence of mixed oxidation states of Mo5+ and Mo6+ while those deposited at substrate temperatures ≥473 K were in Mo6+ oxidation state of MoO3. The films formed at substrate temperatures ≥473 K were polycrystalline in nature with orthorhombic α-phase MoO3. Fourier transform infrared spectra of the films showed an absorption band at 1000 cm−1 correspond to the stretching vibration of MoO, the characteristic of the α-MoO3 phase. The electrical resistivity increased from 3.3 × 103 to 8.3 × 104 Ω cm with the increase of substrate temperature from 303 to 473 K respectively due to improvement in the crystallinity of the films. Optical band gap of the films increased from 3.03 to 3.22 eV with the increase of substrate temperature from 303 to 523 K.  相似文献   

2.
Thin films of tantalum oxide (Ta2O5) have been prepared by pulsed laser deposition technique at different substrate temperatures (300-973 K) under vacuum and under oxygen background (pO2 = 2 × 10−3 mbar) conditions. The films are annealed at a temperature of 1173 K. The as-deposited films are amorphous irrespective of the substrate temperature. XRD patterns show that on annealing, the films get crystallized in orthorhombic phase of tantalum pentoxide (β-Ta2O5). The annealed films deposited at substrate temperatures 300 K and 673 K have a preferred orientation along (0 0 1) plane, whereas the films deposited at substrate temperatures above 673 K show a preferred orientation along (2 0 0) crystal plane. The deposited films are characterized using techniques such as grazing incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM), micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and UV-visible spectroscopy. FTIR and micro-Raman measurements confirm the presence of Ta-O, Ta-O-Ta and O-Ta-O bands in the films. Grain size calculations from X-ray diffraction and AFM show a decrease with increase in substrate temperature. The variation of transmittance and band gap with film growth parameters are also discussed.  相似文献   

3.
The structural, morphological, optical and electrical properties of ZnTe films deposited by evaporation were investigated as a function of substrate temperature (at −123 and 27 °C) and post-deposition annealing temperature (at 200, 300 and 400 °C). It was determined that films deposited at both substrate temperatures were polycrystalline in nature with zinc-blende structure and a strong (1 1 1) texture. A small Te peak was detected in XRD spectra for both substrate temperatures, indicating that as-deposited ZnTe films were slightly rich in Te. Larger grains and a tighter grain size distribution were obtained with increased substrate temperature. Scanning electron microscopy (SEM) studies showed that the microstructures of the as-deposited films agreed well with the expectations from structure zone model. Post-deposition annealing induced further grain growth and tightened the grain size distribution. Annealing at 400 °C resulted in randomization in the texture of films deposited at both substrate temperatures. Optical spectroscopy results of the films indicated that the optical band gap value increased from 2.13 to 2.16 eV with increased substrate temperature. Increasing the annealing temperature sharpened the band-edge. Resistivity measurements showed that the resistivity of films deposited at substrate temperatures of −123 and 27 °C were 32 Ω cm, and 1.0 × 104 Ω cm, respectively with corresponding carrier concentrations of 8.9 × 1015 cm−3 and 1.5 × 1014 cm−3. Annealing caused opposite changes in the film resistivity between the samples prepared at substrate temperatures of −123 and 27 °C.  相似文献   

4.
ZnO films were prepared using radio frequency magnetron sputtering on Si(1 1 1) substrates that were sputter-etched for different times ranging from 10 to 30 min. As the sputter-etching time of the substrate increases, both the size of ZnO grains and the root-mean-square (RMS) roughness decrease while the thickness of the ZnO films shows no obvious change. Meanwhile, the crystallinity and c-axis orientation are improved by increasing the sputter-etching time of the substrate. The major peaks at 99 and 438 cm−1 are observed in Raman spectra of all prepared films and are identified as E2(low) and E2(high) modes, respectively. The Raman peak at 583 cm−1 appears only in the films whose substrates were sputter-etched for 20 min and is assigned to E1(LO) mode. Typical ZnO infrared vibration peak located at 410 cm−1 is found in all FTIR spectra and is attributed to E1(TO) phonon mode. The shoulder at about 382 cm−1 appearing in the films whose substrates were sputter-etched for shorter time (10-20 min) originates from A1(TO) phonon mode. The results of photoluminescence (PL) spectra reveal that the optical band gap (Eg) of the ZnO films increases from 3.10 eV to 3.23 eV with the increase of the sputter-etching time of the substrate.  相似文献   

5.
Structural, optical and electrical properties of CuIn5S8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn5S8 thin films were carried out at substrate temperatures in the temperature range 100-300 °C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 °C and amorphous for the substrate temperatures below 200 °C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 105 cm−1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 250° C.  相似文献   

6.
Deposited with different oxygen partial pressures and substrate temperatures, MgxZn1−xO thin films were prepared using a Mg0.6Zn0.4O ceramic target by magnetron sputtering. The structural and optical properties of the prepared thin films were investigated. The X-ray diffraction spectra reveal that all the films on quartz substrate are grown along (2 0 0) orientation with cubic structure. The lattice constant decreases and the crystallite size increases with the increase of substrate temperature. Both energy dispersive X-ray spectroscopy and calculated results suggest the ratio of Mg/Zn increases with increasing substrate temperature. The thin film deposited with Ts = 500 °C has a minimal rms roughness of 7.37 nm. The transmittance of all the films is higher than 85% in the visual region. The optical band gap is not sensitive to the oxygen partial pressure, while it increases from 5.63 eV for Ts = 100 °C to 5.95 eV for Ts = 700 °C. In addition, the refractive indices calculated from transmission spectra are sensitive to the substrate temperature. The photoluminescence spectra of MgxZn1−xO thin films excited by 330 nm ultraviolet light indicate that the peak intensity of the spectra is influenced by the oxygen partial pressure and substrate temperature.  相似文献   

7.
Thin films of iridium oxide have been deposited by reactive magnetron sputtering. The influence of oxygen partial pressure in the sputtering plasma on the composition, surface structure and morphology of the films has been studied by XRD, SEM and AFM analysis. An optimal combination of sputtering parameters yields stable microporous amorphous films with highly extended fractal surface. The electrochemical properties of these films have been investigated in view of their application as catalysts for water splitting, using the electrochemical techniques of cyclovoltammetry, electrochemical impedance spectroscopy, and steady state polarization. The SIROFs have shown an excellent electrochemical reversibility and a high catalytic activity toward the oxygen evolution reaction in 0.5 M H2SO4. A current density of 150 mA cm−2 at potential of 1.7 V (versus Ag/AgCl) has been obtained at catalyst load of only 100 μg cm−2. These results combined with the established long-term mechanical stability of the sputtered iridium oxide films (SIROFs) proved the advantages of the reactive magnetron sputtering as simple and reliable method for preparation of catalysts with precisely controlled composition, loading, and surface characteristics.  相似文献   

8.
A combination of X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) using synchrotron radiation is applied to clarify surface chemical states of β-FeSi2 films fabricated by an ion-beam sputtering deposition method. The differences in the chemical states of the films fabricated at substrate temperatures of 873, 973 and 1173 K are investigated. For the film fabricated at 873 K, Si 2p XPS spectra indicate the formation of a relatively thicker SiO2 layer. In addition, Fe L-edge XAS spectra exhibit the formation of FeSi2−X by preferential oxidation of Si or the presence of unreacted Fe. The results for the film fabricated at 1173 K imply the existence of FeSi2 with α and ? phases. In contrast, the results for the film fabricated at 973 K indicate the formation of relatively homogeneous β-FeSi2. These imply that the relatively excellent crystal property of the film fabricated at 973 K is due to the formation of homogeneous β-FeSi2. As a conclusion, the combination of XPS and XAS using synchrotron radiation is a powerful tool to elucidate the surface chemical states of thin films.  相似文献   

9.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

10.
Thin films of indium oxide, In2O3, were deposited by chemical spray pyrolysis technique, using aqueous alcoholic solutions of indium acetylacetonate (In-acac) precursor, on glass substrates kept at temperatures between 300 and 500 °C. The structural, optical, and electrical properties have been investigated as a function of deposition temperature, precursor concentration, carrier gas pressure, and substrate-to-nozzle distance. X-ray diffraction studies showed that the formation of nanocrystalline In2O3 films is preferentially oriented along (2 2 2) plane. The surface morphological modifications with substrate temperature were observed using scanning electron and atomic force microscopic studies. Optical transmittance behavior of the films in the visible and IR region was strongly affected by the deposition parameters. The optical band gap values observed are between 3.53 and 3.68 eV. The long wavelength limit of refractive index is 1.83. The Hall mobility is found to vary from 23 to 37 cm2/V s and carrier density is found nearly constant at about 1020 cm−3.  相似文献   

11.
Ni thin films of 250 nm thicknesses were coated on type 304 and 316 stainless steels and post N+ ion implanted at 15 keV energy with a fluence of 5 × 1017 N+ cm−2 at different substrate temperatures. Surface nano-structure of the samples were analysed using X-ray diffraction (XRD), atomic force microscopy (AFM) before corrosion test and scanning electron microscopy (SEM) after corrosion test. Corrosion behaviour of the samples in 1.0 M H2SO4 solution was investigated by means of potentiodynamic technique. Nano-structure and crystallography of the films showed the development of Ni3N(1 1 1) and Ni4N(2 0 0) orientations with a minimum surface roughness and grain size at 400 K substrate temperature. The highest corrosion resistance with a corrosion current of 0.01 μA cm−2 (for SS(316)) and 0.56 μA cm−2 (for SS(304)) was achieved in case of samples which were N+ ion implanted at 400 K. Results for both types of stainless steels showed good agreement and the better performance of SS(316) was attributed to the 2% molybdenum contents in the alloy composition of this type of stainless steel, which enhances the effectiveness of nitrogen in retarding the corrosion process.  相似文献   

12.
High temperature superconducting GdBa2Cu3O7 (GdBCO) thin films were grown by pulsed laser ablation. Textured MgO on metal substrates was used as a template for second generation wire applications. Growth conditions of GdBCO thin films were investigated for substrate temperature (Ts) and oxygen partial pressure (PO2) during deposition. Superconducting critical currents of the films were obtained in the films grown at 790–810 °C of Ts and at 100–700 mTorr of PO2. Scanning electron micrographs of the films revealed uniform and well-connected grains with some outgrown structures. X-ray θ–2θ scans of the films grown at 810 °C and 300–500 mTorr exhibited c-axis oriented texture. In-plane alignment and c-axis mosaic spread of the films were determined from X-ray Φ scans and rocking curves, respectively. Polarized Raman scattering spectroscopy was used to characterize optical phonon modes, oxygen content, cation disorder, and some possible second phases of the films. The Raman spectra of the films with large critical current density showed modes at 326–329 cm−1, 444–447 cm−1, 500–503 cm−1 related to vibration of oxygen atoms. Origin of small peaks near 600 cm−1 will be discussed as well. The information obtained from Raman scattering measurements will be useful for quality control of the conductors as well as optimization of the process conditions.  相似文献   

13.
Polycrystalline cadmium telluride films were successfully deposited on glass substrates by ablating a CdTe target by pulsed Nd–YAG laser. Microstructural studies indicated an increase in the average crystallite size from 15 nm to ∼50 nm with the increase in substrate temperature during deposition. The films deposited here were slightly tellurium rich. X-ray diffraction pattern indicated that the films deposited at 300 K had wurtzite structure while those deposited above 573 K were predominantly of zinc blende structure. Residual strain in the films deposited at 300 K was quite low as compared to those deposited at higher temperatures. PL spectra of all the CdTe films were dominated by a strong peak at ∼921 nm (∼1.347 eV) followed by a low intensity peak at ∼863 nm (∼1.438 eV). Characteristics Raman peaks for CdTe indicated a peak at ∼120 cm−1 followed by peaks located at ∼140 cm−1 and 160 cm−1.  相似文献   

14.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

15.
Indium tin oxide (ITO) thin films were deposited onto glass substrates by rf magnetron sputtering of ITO target and the influence of substrate temperature on the properties of the films were investigated. The structural characteristics showed a dependence on the oxygen partial pressure during sputtering. Oxygen deficient films showed (4 0 0) plane texturing while oxygen-incorporated films were preferentially oriented in the [1 1 1] direction. ITO films with low resistivity of 2.05 × 10−3 Ω cm were deposited at relatively low substrate temperature (150 °C) which shows highest figure of merit of 2.84 × 10−3 square/Ω⋅  相似文献   

16.
HfO2 films prepared on glass substrates by dc reactive magnetron sputtering in an Ar + O2 atmosphere are investigated. The films are polycrystallized with a pure monoclinic phase, and the crystallization strongly relates to the technology environment. Charged particle bombardment mainly caused by negative oxygen ions during sputtering on the films results in rougher surface morphology and worse crystalline property. Influence of sputtering pressure, substrate temperature and Ar:O2 flow ratio is studied. The main orientations of the films are (−1 1 1) and (1 1 1). The (−1 1 1) orientation is stable, but (1 1 1) orientation is very sensitive to the sputtering condition, and it can be suppressed effectively by introducing charged particle bombardment, lowing sputtering pressure and increasing oxygen concentration.  相似文献   

17.
The high resolution absorption spectrum of methane in the 1.58 μm transparency window has been recorded at room temperature and at 79 K by CW-Cavity Ring Down Spectroscopy using a cryogenic cell and a series of Distributed Feed Back (DFB) diode lasers. The achieved sensitivity (αmin ∼ 3 × 10−10 cm−1) has allowed for a detailed characterization of the 6289-6526 cm−1 region which corresponds to the lowest opacity of the transparency window. A list of 6868 and 4555 transitions with intensities as weak as 1 × 10−29 cm/molecule was constructed from the recordings at 297 and 79 K, respectively. By comparison with a spectrum of CH3D recorded separately by Fourier Transform Spectroscopy, 1282 and 640 transitions of monodeuterated methane, CH3D, in natural abundance in our sample were identified at 297 and 79 K, respectively.The rotational temperature determined from the intensity distribution of the 3ν2 band of CH3D (79.3 K) was found in good agreement with the temperature value previously obtained from the Doppler line broadening. The reduction of the rotational congestion by cooling down to 79 K reveals a spectral region near 6300 cm−1 where CH3D transitions are dominant.The low energy values of the transitions observed both at 79 K and at room temperature were derived from the variation of their line intensities. These transitions with lower energy determination represent 93.9% and 68.4% of the total absorbance in the region, at 79 K and room temperature, respectively. The quality of the obtained empirical low energy values is demonstrated for CH4 by the marked propensity of the empirical low J values to be close to integers. The line lists at 79 K and room temperature provided as Supplementary Material allow accounting for the temperature dependence of methane absorption between these two temperatures. The investigated region covering the 5ν4 band of the 12CH4 isotopologue will be valuable for the theoretical treatment of this band which is the lowest energy band of the icosad.  相似文献   

18.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

19.
Ion beam sputtering process was used to deposit n-type fine-grained Bi2Te3 thin films on BK7 glass substrates at room temperature. In order to enhance the thermoelectric properties, thin films are annealed at the temperatures ranging from 100 to 400 °C. X-ray diffraction (XRD) shows that the films have preferred orientations in the c-axis direction. It is confirmed that grain growth and crystallization along the c-axis are enhanced as the annealing temperature increased. However, broad impurity peaks related to some oxygen traces increase when the annealing temperature reached 400 °C. Thermoelectric properties of Bi2Te3 thin films were investigated at room temperature. The Bi2Te3 thin films, including as-deposited, exhibit the Seebeck coefficients of −90 to −168 μV K−1 and the electrical conductivities of 3.92×102-7.20×102 S cm−1 after annealing. The Bi2Te3 film with a maximum power factor of 1.10×10−3 Wm−1 K−2 is achieved when annealed at 300 °C. As a result, both structural and transport properties have been found to be strongly affected by annealing treatment. It was considered that the annealing conditions reduce the number of potential scattering sites at grain boundaries and defects, thus improving the thermoelectric properties.  相似文献   

20.
Metal-oxide-semiconductor capacitors (MOSCs) and metal-oxide-semiconductor field-effect transistors (MOSFETs) incorporating hafnium silicate (Hf-silicate) dielectrics were fabricated by using atomic layer deposition (ALD). The electrical properties of these Hf-silicate thin films with various postnitridation annealing (PNA) temperatures were then examined to find the best nitridation condition. It is found that the best conditions to achieve the lowest gate leakage current and best equivalent oxide thickness (EOT) are when PNA is performed at 800 °C in NH3 ambient for 60 s. To understand the obtained film, carrier transportation mechanisms, the temperature dependence of the leakage current was measured from 300 K to 500 K for both gate injection and substrate injection. The result reveals that the leakage mechanisms involve Schottky emission at high temperature and low electrical field and Poole-Frenkle emission at low temperature and high electrical field. The barrier heights of poly-Si/Hf-silicate and Hf-silicate/Si interfaces extracted from Schottky emission are 1.1 eV and 1.04 eV, respectively. The interface traps per unit area, the mean density of interface traps per area and energy and the mean capture cross-section are determined about 8.1 × 1010 cm−2, 2.7 × 1011 cm−2 eV−1 and 6.4 × 10−15 cm−2 using charge pumping method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号