首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reduction adsorption of silver diamminonitrate on different kinds of activated carbonfibers (ACF) has been studied in this paper. The effect of different parameters, including adsorptiontemperature, concentrations of activation agents, and activation time on the silver adsorptioncapacities of activated carbon fibers has been investigated The results show that higher temperaturein which the silver complex interacts with ACF. or higher concentration of activation agent, will makehigher reduction adsorption capacities of ACFs. More over, ACFs activated with phosphoric acidhave higher reduction capacities than those activated with zinc chloride or steam.  相似文献   

2.
活性碳纤维对银离子还原吸附能力的改进   总被引:8,自引:0,他引:8  
活性碳纤维不仅对有机物有高的吸附容量,对贵金属离子也具有强的还原吸附能力,可将Pd(Ⅱ),Ag(Ⅰ),Au(Ⅲ)等离子还原为金属单质。因而可用于提取矿液或加收废液中的贵金属。由此,提高或改善贵金属在活性碳纤维上的还原吸附容量或分布形成,显得非常重要。本文研究了活性碳纤维制备条件、表面氧化改性、以有负载有机物等对活性碳纤维还原能力的影响。结果表明,(1)制备条件对剑麻基活性碳纤维的还原能力有很大的影响。用H3PO4或ZnCl2活化的活性碳纤维对银离子具有更高的还原吸附容量,分别可达250和700mg/g,约为水蒸汽活化剑麻基活性碳纤维对银离子还原吸附容量的2倍和5倍。(2)过氧化氢、高锰酸钾、或硝酸等无机氧化剂对活性碳纤维进行表面改性,也能提高活性碳纤维的还原能力。结果表明,虽然改性活性碳纤维的比表面积和孔体积下降10-20%左右,但基表面含氧量及含氧基团的种类发生了改变。这些改性活性碳纤维对Ag(NH3)2^ 的还原吸附量大幅度提高,可达550mg/g以上。推断表面改性在活性碳纤维表面创造了更多有利于碱性条件下发生氧化还原的活性点。(3)在活性碳纤维表面负载适当的有机物如亚甲基蓝、苯胺或对硝基苯酚,也能显著提高活性碳纤维对Ag(NH3)2^ 的还原吸附能力。  相似文献   

3.
煤焦油沥青基炭纤维(CPCF)价格低廉含炭量高、易于活化,是制备纤维状活性炭(CPACF)的优良原料。本文讨论了CPCF的抗拉强度和活化条件对CPACF比表面积的影响。并同石油系沥青基炭纤维(PPCF)进行了比较。考察了不同比表面积的CPACF、PPACF和商品用颗粒活性炭(AC)对0.1mol/L碘溶液、0.005mol/L亚早兰溶液和293K下三氯甲烷饱和蒸汽的吸附性能,及以上三样品在293K  相似文献   

4.
载银磷酸活化剑麻基活性炭纤维的抗菌性能研究   总被引:5,自引:0,他引:5  
本文利用磷酸化方法,制备各种剑麻基活性炭纤维,并利用活性炭纤维的氧化还原特性及吸附性能,在其上负载金属银,研究并比较了这些载银活性炭纤维对大肠杆菌和金黄色葡萄球菌的杀灭作用,结果表明,磷酸浓度,活化方法,活化时间,纤维的比表面积等因素的均对材料的抗菌性能有一定的影响,磷酸活化的活性炭纤维表现出强的抗菌杀菌能力,高浓度磷酸活化后的纤维抗菌能力有所提高,并且抗菌能力随活化时间的延长而增加,抗菌前后纤维上负载的银未曾大量脱落,经5次抗菌试验后材料仍显示出很强的抗菌能力。  相似文献   

5.
活性碳纤维的结构修饰及其吸附氙性能的研究   总被引:3,自引:0,他引:3  
活性炭纤维对氙的吸附容量与其孔结构密切相关,为了提高活性炭纤维对氙气的吸附容量,本文分别用亚甲基蓝、对硝基苯酚等有机物,或氯化钠、碘等无机化合物填充的方法修饰活性炭纤维的孔结构;以及利用高锰酸钾或硝酸等氧化处理修饰活性炭纤维的表面化学性质,同时,利用低温氮等温吸附表征了这些改性活性炭纤维的孔结构,以及通过光电子能谱表征了改性活性炭纤维的表面化学结构,上述化合物充填或氧化改性活性炭纤维对氙的吸附性能的研究结果表明,适量化合物填充,或合适浓度硝酸对活性炭纤维的表面处理,可以有效地修饰活性炭纤维的孔结构或改变活性炭纤维表面对氙的亲和力。因而可有效地提高改性活性炭纤维对氙的吸附容量。  相似文献   

6.
In this work, the effect of immersion in silver nitrate solution on activated carbon fibers (ACFs) was investigated in relation to adsorption behavior and antibacterial activity of ACFs supported with silver (ACF/Ag). The pore and surface properties were studied in terms of BET volumetric measurement with nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antibacterial activities of ACF/Ag were studied in broth dilution tests against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from a point of view of water purification. As an experimental result, the silver content of ACF/Ag increased with increasing concentration of silver nitrate. It was found that the micropore structure slightly decreased as the silver nitrate concentration increased. Otherwise, it was revealed that the ACF/Ag possessed a strong antibacterial activity and an inhibitory effect for the growing of E. coli and S. aureus, respectively. Silver content on ACF/Ag decreased rapidly because of rough morphology of silver particles in water erosion.  相似文献   

7.
The present study analyses the preparation of activated carbon fibres (ACFs) by the so-called “physical” activation method with steam or carbon dioxide and their application for benzene and toluene adsorption at low concentration (200 ppmv). ACFs have been scarcely studied for the adsorption of these pollutants at low concentration in gaseous phase, despite their interesting features regarding adsorption kinetics, bed pressure drop, possibility of conformation and others. Our results have shown that the preparation method used is suitable to produce ACFs with high adsorption capacities for benzene and toluene at the low concentration used. The fibre morphology of the ACFs does not enhance their performance, which results to be similar to other non-fibrous activated carbons such as granular, pellets and powders. Such good performance of the ACFs, leading to benzene and toluene adsorption capacities as large as 31 g benzene/100 g ACF or 53 g toluene/100 g ACF, can be explained due to their large volume of narrow micropores (<0.7 nm) developed upon activation and their low content in surface oxygen groups. Our results have also shown very good agreement between the adsorption results derived from dynamic adsorption experiments and from adsorption isotherms. As the relative pressure of the organic compound increases the corresponding fraction of narrow micropore volumes filled by benzene and toluene increases. For a given low and comparable relative pressure, toluene always occupies a larger fraction of narrow micropores than benzene.  相似文献   

8.
1. INTRODUCTION Microbial pollution will bring about various problems in industry and other vital fields, such as causing decomposing of materials, harming people抯 health. In order to reduce these problems, new antibacterial materials have been demanded. Recently, much attention has been paid to inorganic materials including zinc oxide [1~4]. These inorganic antibacterial materials are now substituting for organic materials to avoid releasing noxious organic molecules harmful to humans;…  相似文献   

9.
In this study, activated carbon fibers (ACFs), onto which silver (Ag) nanoparticles have been introduced by an electroplating technique, were used to remove NO. Surface properties of the ACFs were determined by X-ray diffraction and scanning electron microscopy. N2 adsorption isotherms at 77 K were investigated by BET and t-plot methods to characterize the specific surface areas and pore volumes, and NO removal efficiency was confirmed by a gas chromatographic technique. As for the experimental results, Ag content on the ACFs increased with plating time. However, adsorption properties such as the BET specific surface area and the total pore volume were somewhat decreased in the presence of Ag nanoparticles. NO removal efficiency of all Ag-ACFs was higher than that of untreated ACFs and increased with Ag content. However, a decrease in the extent of NO removal was shown in the excessively plated ACFs, which might be associated with the blocking of the micropores in the carbon; therefore, an optimal Ag content needs to exist in the presence of initially well-developed micropores to lead to an increase in the efficient NO removal ability of the ACF.  相似文献   

10.
In this work, the adsorption of Pb(II) from aqueous solution was investigated on various types of activated carbon fibers (ACFs) manufactured from polyacrylonitrile and phenolic resin. The textural and physicochemical properties of the ACFs were determined by the N2-BET method and acid-base titration. The experimental adsorption equilibrium data of Pb(II) on the ACFs were obtained in a batch adsorber, and the Langmuir isotherm model better fitted the experimental data. The effects of the type of ACF and precursor of ACF, solution pH and temperature upon the adsorption of Pb(II) on the ACFs were examined in detail. The adsorption capacity was highly dependent upon the precursor of ACF. The Pb(II) adsorption capacity of the ACFs augmented when the solution pH and temperature were increased from 2 to 4 and from 288 to 308 K, respectively. The effect of the pH was attributed to the interactions between the surface of the ACF and Pb2+ ions present in the water solution. The Pb(II) adsorption capacity of the ACFs was enhanced by oxidation with HNO3 solution and the enhancement factor was between 1.1 and 1.4. The reversibility of the adsorption of Pb(II) was investigated by first adsorbing Pb(II) on an ACF and then desorbing the Pb(II). It was noticed that Pb(II) was substantially desorbed from ACF while reducing the solution pH to 2. It was concluded that the Pb(II) was mainly adsorbed on the ACFs by chemisorption, electrostatic interactions and ion exchange.  相似文献   

11.
Four types of activated carbon fibers (ACFs) with different specific surface areas (SSA) were used as electrode materials for water desalination using capacitive deionization (CDI). The carbon fibers were characterized by scanning electron microscopy and N(2) adsorption at 77 K, and the CDI process was investigated by studying the salt adsorption, charge transfer, and also the charge efficiency of the electric double layers that are formed within the micropores inside the carbon electrodes. It is found that the physical adsorption capacity of NaCl by the ACFs increases with increasing Brunauer-Emmett-Teller (BET) surface area of the fibers. However, the two ACF materials with the highest BET surface area have the lowest electrosorptive capability. Experiments indicate that the charge efficiency of the double layers is a key property of the ACF-based electrodes because the ACF material which has the maximum charge efficiency also shows the highest salt adsorption capacity for CDI.  相似文献   

12.
研究了在O2和H2O存在下,乙烯渣油沥青基活性炭纤维(ETPACF)和粘胶基活性炭纤维(CelluloseACF)的脱硫活性.结果表明,在比表面积相近的情况下,ETPACF的脱硫活性明显低于CelluloseACF,这可归因于后者具有较强的吸附和催化氧化SO2能力及较大的吸水量,尤其是具有较强的催化氧化SO2的能力,这些能力又与其表面含有含氮官能团以及某些含氧官能团有关,因此ACF的表面官能团对其脱硫活性影响很大.  相似文献   

13.
The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.  相似文献   

14.
活性炭纤维的预处理及其SCR催化活性研究   总被引:3,自引:1,他引:2  
随着中国能源工业的继续发展,氮氧化物排放相应政策法规的制定,烟气脱硝已经成为污染控制的重要组成部分.  相似文献   

15.
Activated carbon fibers prepared from aramid fibers have proved to possess outstanding homogeneity in pore size, most of all when Nomex aramid fiber is used as precursor. Taking advantage of this feature, microporous carbon molecular sieves for air separation have been prepared through carbon vapor deposition of benzene on Nomex-derived carbon fibers activated to two different burnoff degrees. Carbon molecular sieves with good selectivity for this separation and showing acceptable adsorption capacities were obtained from ACFs activated to the two burnoff degrees chosen.  相似文献   

16.
We impregnated Rayon-based activated carbon fibers (ACFs) by p-aminobenzoic acid (PABA) and systematically investigated their porous structure, surface chemistry, and formaldehyde removal behavior. Using standard nitrogen adsorption analysis, we found that the specific surface area, the micropore volume, and the total pore volume decreased with increasing concentration of PABA. Through elemental analysis and X-ray photoelectron spectroscopy, it was found that some nitrogen-containing functional groups presented on the surface of modified Rayon ACFs. The modified Rayon-based ACFs showed much higher adsorption capacity and longer breakthrough time for formaldehyde than did as-prepared Rayon-based ACF. We proposed that the improvement of formaldehyde removal by modified ACFs was attributed to the combined effects of physisorption contributed by pore structures and chemisorption contributed by the N-containing functional groups, whereas there was only physisorption between the as-prepared ACF and formaldehyde molecules.  相似文献   

17.
Activated carbon nanofibers (ACNFs) were prepared by electrospinning polyacrylonitrile solutions, and subsequent steam activation process. The ACNFs were characterized by scanning electron microscope, X-ray photoelectron spectroscopy and nitrogen adsorption at 77 K. The adsorption equilibrium data for benzene and ethanol were obtained by using static vapor adsorption system. As-prepared ACNFs demonstrate higher adsorption capacities for volatile organic compounds (VOCs) than activated carbon fibers (ACFs) by virtue of smaller diameter and more available adsorption sites on the surface. The adsorption performance of ACNFs increases with the burn-off, as a result of the increased microporosity. In addition, it is noteworthy that surface chemistry has an important effect on the adsorption of polar VOCs. The ACNF with higher oxygen content has a stronger adsorption tendency for ethanol.  相似文献   

18.
This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater.  相似文献   

19.
研究了活性炭纤维填充床脱除水中酚类化合物及其填充床的再生方法。结果表明当平衡浓度变化范围为0到0.8kg/m^3时,吸附等温线符合Langmuir型;用乙醇或热的NaOH稀溶液可再生被酚饱和的活性炭纤维填充床,再生效率达90%以上,建立了考虑轴向弥散、纤维内扩散和外膜传质阻力的填充床数学模型,模型由正交配置方法离散,Gear方法求解以预测穿透曲线。模型预测值与实验数据吻合较好,结果确认轴向弥散是影响活性炭纤维填充床穿透曲线的主要因素。  相似文献   

20.
The present study concerns the physical activation and chemical oxidation of pitch-based activated carbon fibers (ACFs) as ways to improve the adsorption properties. The surface oxides of the ACFs studied were determined by Boehm's titration and the pore structures were studied by the BET method with N(2)/77 K adsorption. Also, the adsorption properties of the ACFs were investigated with chromium ion adsorption by different adsorption models. As a result, it was observed that carboxyl groups were largely created after nitric acid treatment on ACFs. The affinity for chromium ions increases with increasing specific surface area, micropore volume, and surface functionalities of ACFs as the activation time increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号