首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater.  相似文献   

2.
In this study, activated carbon fibers (ACFs) were produced by an oxyfluorination treatment to enhance the capacity of ammonia gas removal. The introduction of polar groups, such as CF, CO, and COOH, on the ACFs was confirmed by a XPS analysis, and N2/77 K adsorption isotherm characteristics including specific surface area and total and micropore volumes were studied by the BET and t-plot methods. The ammonia-removal efficiency was confirmed by a gas-detecting tube technique. As a result, the specific surface area and micropore volume of ACFs were slightly destroyed as the surface treatment time was increased. However, the oxyfluorinated ACFs led to an increase of fluorine and oxygen-containing polar functional groups in ACF surfaces, resulting in an increase in the ammonia-removal efficiency of the ACFs produced.  相似文献   

3.
In this study, activated carbon fibers (ACFs), onto which silver (Ag) nanoparticles have been introduced by an electroplating technique, were used to remove NO. Surface properties of the ACFs were determined by X-ray diffraction and scanning electron microscopy. N2 adsorption isotherms at 77 K were investigated by BET and t-plot methods to characterize the specific surface areas and pore volumes, and NO removal efficiency was confirmed by a gas chromatographic technique. As for the experimental results, Ag content on the ACFs increased with plating time. However, adsorption properties such as the BET specific surface area and the total pore volume were somewhat decreased in the presence of Ag nanoparticles. NO removal efficiency of all Ag-ACFs was higher than that of untreated ACFs and increased with Ag content. However, a decrease in the extent of NO removal was shown in the excessively plated ACFs, which might be associated with the blocking of the micropores in the carbon; therefore, an optimal Ag content needs to exist in the presence of initially well-developed micropores to lead to an increase in the efficient NO removal ability of the ACF.  相似文献   

4.
We impregnated Rayon-based activated carbon fibers (ACFs) by p-aminobenzoic acid (PABA) and systematically investigated their porous structure, surface chemistry, and formaldehyde removal behavior. Using standard nitrogen adsorption analysis, we found that the specific surface area, the micropore volume, and the total pore volume decreased with increasing concentration of PABA. Through elemental analysis and X-ray photoelectron spectroscopy, it was found that some nitrogen-containing functional groups presented on the surface of modified Rayon ACFs. The modified Rayon-based ACFs showed much higher adsorption capacity and longer breakthrough time for formaldehyde than did as-prepared Rayon-based ACF. We proposed that the improvement of formaldehyde removal by modified ACFs was attributed to the combined effects of physisorption contributed by pore structures and chemisorption contributed by the N-containing functional groups, whereas there was only physisorption between the as-prepared ACF and formaldehyde molecules.  相似文献   

5.
In this work, the adsorption of Pb(II) from aqueous solution was investigated on various types of activated carbon fibers (ACFs) manufactured from polyacrylonitrile and phenolic resin. The textural and physicochemical properties of the ACFs were determined by the N2-BET method and acid-base titration. The experimental adsorption equilibrium data of Pb(II) on the ACFs were obtained in a batch adsorber, and the Langmuir isotherm model better fitted the experimental data. The effects of the type of ACF and precursor of ACF, solution pH and temperature upon the adsorption of Pb(II) on the ACFs were examined in detail. The adsorption capacity was highly dependent upon the precursor of ACF. The Pb(II) adsorption capacity of the ACFs augmented when the solution pH and temperature were increased from 2 to 4 and from 288 to 308 K, respectively. The effect of the pH was attributed to the interactions between the surface of the ACF and Pb2+ ions present in the water solution. The Pb(II) adsorption capacity of the ACFs was enhanced by oxidation with HNO3 solution and the enhancement factor was between 1.1 and 1.4. The reversibility of the adsorption of Pb(II) was investigated by first adsorbing Pb(II) on an ACF and then desorbing the Pb(II). It was noticed that Pb(II) was substantially desorbed from ACF while reducing the solution pH to 2. It was concluded that the Pb(II) was mainly adsorbed on the ACFs by chemisorption, electrostatic interactions and ion exchange.  相似文献   

6.
活性碳纤维对银离子还原吸附能力的改进   总被引:8,自引:0,他引:8  
活性碳纤维不仅对有机物有高的吸附容量,对贵金属离子也具有强的还原吸附能力,可将Pd(Ⅱ),Ag(Ⅰ),Au(Ⅲ)等离子还原为金属单质。因而可用于提取矿液或加收废液中的贵金属。由此,提高或改善贵金属在活性碳纤维上的还原吸附容量或分布形成,显得非常重要。本文研究了活性碳纤维制备条件、表面氧化改性、以有负载有机物等对活性碳纤维还原能力的影响。结果表明,(1)制备条件对剑麻基活性碳纤维的还原能力有很大的影响。用H3PO4或ZnCl2活化的活性碳纤维对银离子具有更高的还原吸附容量,分别可达250和700mg/g,约为水蒸汽活化剑麻基活性碳纤维对银离子还原吸附容量的2倍和5倍。(2)过氧化氢、高锰酸钾、或硝酸等无机氧化剂对活性碳纤维进行表面改性,也能提高活性碳纤维的还原能力。结果表明,虽然改性活性碳纤维的比表面积和孔体积下降10-20%左右,但基表面含氧量及含氧基团的种类发生了改变。这些改性活性碳纤维对Ag(NH3)2^ 的还原吸附量大幅度提高,可达550mg/g以上。推断表面改性在活性碳纤维表面创造了更多有利于碱性条件下发生氧化还原的活性点。(3)在活性碳纤维表面负载适当的有机物如亚甲基蓝、苯胺或对硝基苯酚,也能显著提高活性碳纤维对Ag(NH3)2^ 的还原吸附能力。  相似文献   

7.
In this work, the effect of electrochemical oxidation treatment on activated carbon fibers (ACFs) was studied in the context of Cr(VI), Cu(II), and Ni(II) adsorption behavior. Ten weight percent phosphoric acid (A-ACFs) and ammonia (B-ACFs) were used for acidic and basic electrolytes, respectively. Surface properties of ACFs were determined by X-ray photoelectron spectroscopy (XPS). The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. As a result, the electrochemical oxidation treatment led to an increase in the amount of oxygen-containing functional groups. Also, the adsorption capacity of the electrochemically oxidized ACFs was improved in the order B-ACFs > A-ACFs > untreated-ACFs, in spite of a decrease in specific surface area which resulted from pore blocking by functional groups and pore destruction by acidic electrolyte. It was clearly found that the heavy metal ions were largely influenced by the functional groups on the ACF surfaces.  相似文献   

8.
The present study concerns the physical activation and chemical oxidation of pitch-based activated carbon fibers (ACFs) as ways to improve the adsorption properties. The surface oxides of the ACFs studied were determined by Boehm's titration and the pore structures were studied by the BET method with N(2)/77 K adsorption. Also, the adsorption properties of the ACFs were investigated with chromium ion adsorption by different adsorption models. As a result, it was observed that carboxyl groups were largely created after nitric acid treatment on ACFs. The affinity for chromium ions increases with increasing specific surface area, micropore volume, and surface functionalities of ACFs as the activation time increases.  相似文献   

9.
In this work, the effect of immersion in silver nitrate solution on activated carbon fibers (ACFs) was investigated in relation to adsorption behavior and antibacterial activity of ACFs supported with silver (ACF/Ag). The pore and surface properties were studied in terms of BET volumetric measurement with nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antibacterial activities of ACF/Ag were studied in broth dilution tests against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from a point of view of water purification. As an experimental result, the silver content of ACF/Ag increased with increasing concentration of silver nitrate. It was found that the micropore structure slightly decreased as the silver nitrate concentration increased. Otherwise, it was revealed that the ACF/Ag possessed a strong antibacterial activity and an inhibitory effect for the growing of E. coli and S. aureus, respectively. Silver content on ACF/Ag decreased rapidly because of rough morphology of silver particles in water erosion.  相似文献   

10.
In this work, the pitch-based activated carbon fibers (ACFs) were prepared by nitric acid to investigate the multi-metal adsorption in interfacial and textural points of view. N2/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were studied by BET specific surface area and t-plot methods, respectively. As a result, the specific surface area of the almost neutral ACFs in nature significantly decreased with nitric acid treatment, probably due to the widening of micropores. However the total acidity, including the carboxyl groups, on carbon surfaces was extremely induced during the acidic surface treatment. From the adsorptions of Cu2+ and Ni2+, it was revealed that the adsorption capacity of metal ions was mainly influenced by the weakly acidic functional groups such as lactones on the carbon surfaces at pH < pI (isoelectric point), and by the strongly acidic functional groups such as carboxyl groups at pH > pI.  相似文献   

11.
In this study, the activated carbon fibers (ACFs) on which copper metal was deposited by electroplating were used to remove nitric oxide (NO). N(2)/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by BET and T-plot methods. NO removal efficiency was confirmed by gas chromatographic technique. From the experimental results, the copper content supported on ACFs led to an increase in the NO conversion, in spite of the decrease of the specific surface area or the micropore volume of ACFs. Consequently, the presence of Cu on ACFs played an important role in improving the NO reduction into O(2) and N(2), which was mainly attributed to the catalytic reactions of Cz-NO-Cu.  相似文献   

12.
NO removal of Ni-electroplated activated carbon fibers   总被引:3,自引:0,他引:3  
In this study, activated carbon fibers (ACFs) were treated by a Ni-electroplating technique in order to remove nitric oxide (NO). The surface properties of the ACFs were investigated by XPS measurement. N2/77 K adsorption isotherm characteristics were determined by the BET equation. Also, NO-removal efficiency was confirmed by gas chromatography. For experimental results, Ni2p was introduced on ACFs during the Ni-electroplating technique. The nickel deposited on ACFs appeared to increase the NO removal despite the decrease in the BET specific surface areas and micropore volumes compared to nontreated ACFs. Consequently, it was found that NO conversion of ACFs was significantly improved due to the catalytic reaction of nickel deposited on ACFs.  相似文献   

13.
The feasibility of activated carbon fibers (ACFs) used as a new type of particle electrodes in 3-dimensional (3D) electrode for the electrochemical degradation of phenol wastewater was investigated for the first time. The surface morphology, textual properties and electrochemical behaviors of ACF were studied by scanning electron microscopy (SEM), N2-BET sorption and cyclic voltammograms (CVs), respectively. Compared with the commercialized granular activated carbon (GAC), ACF particle electrodes exhibited higher electrochemical oxidation performance on the mineralization of target pollutant. The identification of intermediates indicated most of oxidation products were adsorbed onto the ACFs. The detection of hydrogen peroxide and hydroxyl radicals in the reaction system suggested that the reaction mechanism was direct anodic oxidation of pollutant on ACFs if the cathode did not contact the ACFs. The operative parameters including initial concentration of substrate, applied current density and the initial aqueous pH have been scientifically studied in search of the optimum condition. Based upon the obtained results, the ACFs longevity was tested in solution at pH 2.0, revealing relatively high electrooxidation capacity and long catalyst lifetime of ACFs in acid solution.  相似文献   

14.
研究了在O2和H2O存在下,乙烯渣油沥青基活性炭纤维(ETPACF)和粘胶基活性炭纤维(CelluloseACF)的脱硫活性.结果表明,在比表面积相近的情况下,ETPACF的脱硫活性明显低于CelluloseACF,这可归因于后者具有较强的吸附和催化氧化SO2能力及较大的吸水量,尤其是具有较强的催化氧化SO2的能力,这些能力又与其表面含有含氮官能团以及某些含氧官能团有关,因此ACF的表面官能团对其脱硫活性影响很大.  相似文献   

15.
活性碳纤维的结构修饰及其吸附氙性能的研究   总被引:3,自引:0,他引:3  
活性炭纤维对氙的吸附容量与其孔结构密切相关,为了提高活性炭纤维对氙气的吸附容量,本文分别用亚甲基蓝、对硝基苯酚等有机物,或氯化钠、碘等无机化合物填充的方法修饰活性炭纤维的孔结构;以及利用高锰酸钾或硝酸等氧化处理修饰活性炭纤维的表面化学性质,同时,利用低温氮等温吸附表征了这些改性活性炭纤维的孔结构,以及通过光电子能谱表征了改性活性炭纤维的表面化学结构,上述化合物充填或氧化改性活性炭纤维对氙的吸附性能的研究结果表明,适量化合物填充,或合适浓度硝酸对活性炭纤维的表面处理,可以有效地修饰活性炭纤维的孔结构或改变活性炭纤维表面对氙的亲和力。因而可有效地提高改性活性炭纤维对氙的吸附容量。  相似文献   

16.
煤焦油沥青基炭纤维(CPCF)价格低廉含炭量高、易于活化,是制备纤维状活性炭(CPACF)的优良原料。本文讨论了CPCF的抗拉强度和活化条件对CPACF比表面积的影响。并同石油系沥青基炭纤维(PPCF)进行了比较。考察了不同比表面积的CPACF、PPACF和商品用颗粒活性炭(AC)对0.1mol/L碘溶液、0.005mol/L亚早兰溶液和293K下三氯甲烷饱和蒸汽的吸附性能,及以上三样品在293K  相似文献   

17.
研究了活性炭纤维填充床脱除水中酚类化合物及其填充床的再生方法。结果表明当平衡浓度变化范围为0到0.8kg/m^3时,吸附等温线符合Langmuir型;用乙醇或热的NaOH稀溶液可再生被酚饱和的活性炭纤维填充床,再生效率达90%以上,建立了考虑轴向弥散、纤维内扩散和外膜传质阻力的填充床数学模型,模型由正交配置方法离散,Gear方法求解以预测穿透曲线。模型预测值与实验数据吻合较好,结果确认轴向弥散是影响活性炭纤维填充床穿透曲线的主要因素。  相似文献   

18.
The oxygen plasma treatment of activated carbon fibers (ACFs) was carried out to introduce oxygen-containing groups onto carbon surfaces. Surface properties of the ACFs were determined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). N2/77 K adsorption isotherms were investigated by BET and D-R plot methods to characterize specific surface area, pore volume, and pore size distribution. The efficiency of hydrochloride removal was confirmed by two kinds of methods; one is detecting tubes (range: 1-40 ppm), and the other is a gas chromatography technique. As experimental results, the hydrochloride removal efficiency of the ACFs was increased with the number of plasma treatment times up to around 300%, resulting from newly formed oxygen-containing functional groups (especially phenolic and carboxylic) on carbon surfaces, in the decreased specific surface areas or pore volumes. These results indicate that the plasma treatment leads to the increase of hydrochloride removal due to the improvement of surface functional groups containing oxygen on the carbon surfaces.  相似文献   

19.
Iodine-doped activated carbon fibers (ACFs) were prepared by the iodine immersion method on pitch-based ACF. Then iodine-doped ACFs were heated in argon at 523 K for 4 h and at 673 K for 2 h. The iodine structure of the resultant iodine-doped ACFs was examined using X-ray photoelectron spectroscopy. The micropore structures were determined by N(2) adsorption at 77 K. The surface area and micropore volume of iodine-doped ACFs are less than those of pristine ACFs. However, the pore width does not change with the iodine doping. The effects of iodine doping on adsorption properties of ACFs for H(2)O and NO at 303 K were examined. The iodine doping affected remarkably the adsorptivities of ACFs for H(2)O and NO. In particular, iodine-doped ACFs treated at 673 K show enhanced adsorptivities for H(2)O and NO. This result suggests that iodine molecules doped on the micropores should be charged by heat treatment at 673 K.  相似文献   

20.
1. INTRODUCTION The discharge of effluent containing precious metal ions, which comes from electroplating, mining, smelting, and other industries, not only contaminate the environment where people live, but also cause the waste of natural resources. From…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号