首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Superhydrophobic surfaces are biomimetic structures with potential applications in several key technological areas. In the past decade, several top-down and bottom-up fabrication methods have been developed to create such surfaces. These typically combine a hierarchical structure and low surface energy coatings to increase the contact angle and decrease the rolling angles. Silicon-based superhydrophobic surfaces are particularly attractive since they can be integrated with active electronics in order to protect them from the detrimental effects of environmental water and moisture. In this work, we introduce a simple and inexpensive process incorporating electrochemical surface modification (to create a fractal shape micro-nano topography) in combination with a final wet etching step to fabricate a superhydrophobic silicon surface with a contact angle of 160 degrees and a sliding angle of less than 1 degree.  相似文献   

2.
An effective fabrication method combining deep reactive ion etching and galvanic etching for silicon micro-nano hierarchical structures is presented in this paper. The method can partially control the morphology of the nanostructures and enables us to investigate the effects of geometry changes on the properties of the surfaces. The forming mechanism of silicon nanostructures based on silver nanoparticle galvanic etching was illustrated and the effects of process parameters on the surface morphology were thoroughly discussed. It is found that process parameters have more impact on the height of silicon nanostructure than its diameter. Contact angle measurement and tilting/dropping test results show that as-prepared silicon surfaces with hierarchical structures were superhydrophobic. What's more, two-scale model composed of micropillar arrays and nanopillar arrays was proposed to study the wettability of the surface with hierarchical structures. Wettability analysis results indicate that the superhydrophobic surface may demonstrate a hybrid state at which water sits on nanoscale pillars and immerses into microscale grooves partially.  相似文献   

3.
A method for the preparation of inorganic superhydrophobic silica coatings using sol-gel processing with tetramethoxysilane and isobutyltrimethoxysilane as precursors is described. Incorporation of isobutyltrimethoxysilane into silica layers resulted in the existence of hydrophobic isobutyl surface groups, thereby generating surface hydrophobicity. When combined with the surface roughness that resulted from sol-gel processing, a superhydrophobic surface was achieved. This surface showed improved UV and thermal stability compared to superhydrophobic surfaces generated from polybutadiene by plasma etching. Under prolonged UV tests (ASTM D 4329), these surfaces gradually lost superhydrophobic character. However, when the as-prepared superhydrophobic surface was treated at 500 degrees C to remove the organic moieties and covered with a fluoroalkyl layer by a perfluorooctylsilane treatment, the surface regained superhydrophobicity. The UV and thermal stability of these surfaces was maintained upon exposure to temperatures up to 400 degrees C and UV testing times of 5500 h. Contact angles remained >160 degrees with contact angle hysteresis approximately 2 degrees.  相似文献   

4.
The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders.  相似文献   

5.
This paper describes the fabrication of surfaces with different wettability, superhydrophobic/superhydrophilic, and pH-responsive properties. We used a self-assembled monolayer (SAM) of a dendron thiol as the underlying surface for electrodeposition of gold nanostructures. After this modification with a SAM of n-dodecanethiol or 11-mercaptoundecanol, the surface shows remarkable superhydrophobic properties with a contact angle of about 155 degrees and a tilt angle of less than 2 degrees or superhydrophilic properties with a contact angle of about 0 degrees , respectively. Moreover, a large-scale pH-responsive surface was obtained by modification with 2-(11-mercaptoundecanamido)benzoic acid (7) (MUABA). The pH-responsive behavior was amplified by using rough surfaces.  相似文献   

6.
Artificial superhydrophobic surfaces are typically fabricated by tuning the surface roughness of intrinsically hydrophobic surfaces. We report here the design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrogen-terminated Si surfaces with an intrinsic water contact angle of approximately 74 degrees . The micro-textures consist of overhang structures with well-defined geometries fabricated by microfabrication technologies, which provide positions to support the liquid and prevent the liquid from entering into the indents between the micro-textures. As a result, water is in contact with a composite surface of solid and air, which induces the observed macroscopic superhydrophobic behavior.  相似文献   

7.
We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.  相似文献   

8.
通过化学刻蚀和阳极氧化在AA2024铝合金表面制备超疏水表面。当化学刻蚀时间超过3 min时,表面在很宽pH值范围内显示出水静态接触角大于150°。SEM和AFM照片表明化学刻蚀时间决定了试样表面形貌和粗糙度。FTIR用来研究氟硅烷(G502)与AA2024表面的结合。结果说明FAS(氟硅烷)分子与铝合金表面的三氧化二铝发生反应,并在阳极氧化膜层表面展示出优异的结合性能。超疏水表面的耐腐蚀性能通过在质量分数为3.5%的NaCl溶液中进行动电位极化和交流阻抗(EIS)测试。电化学测试结果和等效电路模型显示出超疏水表面显著改善抗腐蚀性能。  相似文献   

9.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

10.
采用阴离子表面活性剂十二烷基苯磺酸钠(SDBS)作为辅助刻蚀剂, 利用盐酸刻蚀, 在铝基质的表面形成了纳米-微米混合的粗糙结构; 化学刻蚀后的粗糙表面经过1H,1H,2H,2H-全氟癸烷基三乙氧基硅烷(FDTES)的修饰, 形成了接触角大于160°的超疏水表面. 扫描电镜表征结果显示, 所得到的超疏水表面具有纳米-微米混合结构; 基于此, 利用气泡辅助刻蚀机理初步解释了二级混合结构产生的原因, 认为是坑刻蚀和位错刻蚀的共同作用导致了混合结构的产生. 此外, 不同pH和长时间暴露实验证明所制备的铝基超疏水表面具有良好的稳定性.  相似文献   

11.
12.
We present here a facile method for the preparation of TiO2-based superhydrophobic surfaces. It consists of two steps: (1) roughening of the TiO2 surface with a rf (radio frequency) plasma with CF4 as an etchant and (2) modification of the roughened TiO2 surface with an octadodecylphosphonic acid (ODP) monolayer. Plasma etching caused the thinning of the TiO2 film but at the same time enhanced its surface roughness. A discontinuous wedgelike surface microtexture was formed after etching for 30 s, which, after modification with a monolayer of ODP, showed Cassie-type water super-repellency with a contact angle (CA) hysteresis smaller than 2 degrees . The state of water super-repellency (water CA >165 degrees) could be converted to the state of superhydrophilicity (water CA approximately 0 degrees) by means of ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the ODP monolayer by TiO2. Readsorption of ODP molecules leads directly to the recovery of water super-repellency.  相似文献   

13.
超声刻蚀法构建分级结构的超疏水表面   总被引:1,自引:0,他引:1  
在湿法刻蚀和超声空化的基础上, 采用超声刻蚀法制备了具有微纳米分级结构的超疏水表面. 以等体积比的硝酸/乙醇(体积分数为4%)和双氧水(质量分数为30%)的混合溶液作为刻蚀剂, 在室温下对60Si2Mn钢、 60#钢、 T10钢、 Cr06钢、 65Mn钢和硅钢表面超声刻蚀2~10 min, 构建出多种形貌的微纳米分级结构. 上述表面经氟硅烷修饰后具有超疏水性, 水的表观接触角高达157.0°, 155.8°, 157.4°, 154.9°, 157.6°和156.8°, 滚动角分别为6.5°, 19.2°, 6.1°, 7.8°, 6.7°和7.2°. 与常规刻蚀方法相比, 超声刻蚀的化学刻蚀作用因与空化作用耦合而得到强化和改变, 从而在钢表面构建出分级结构. 由于材料表面微结构形貌和固/液界面接触状态不同, 制得的超疏水表面表现出的润湿行为也不同. 超声刻蚀法简单易行, 成本低廉, 适用于其它金属表面构建微纳米分级结构和超疏水表面.  相似文献   

14.
A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.  相似文献   

15.
具有微纳米结构超疏水表面润湿性的研究   总被引:4,自引:0,他引:4  
徐建海  李梅  赵燕  路庆华 《化学进展》2006,18(11):1425-1433
本文综述了近年来具有微纳米结构超疏水表面的研究进展。介绍了具有微纳米结构超疏水表面的制备方法,表面结构对超疏水性能的影响,周期性结构表面超疏水的条件,超疏水表面接触角滞后以及功能化超疏水表面等方面的研究,探讨了这一领域存在的问题及可能的发展方向。  相似文献   

16.
A simple technique was developed for the fabrication of a superhydrophobic surface on the aluminum alloy sheets. Different hierarchical structures(Ag, Co, Ni and Zn) were formed on the aluminum surface by the galvanic replacement reactions. After the chemical modification of them with fluorination, the wettability of the surfaces was changed from superhydrophilicity to superhydrophobicity. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and water contact angle measurement were performed to characterize the morphological characteristic, chemical composition and superhydrophobicity of the surfaces. The as-prepared superhydrophobic surfaces showed a water contact angle as high as ca.160° and sliding angle as low as ca.3°. We hope the method to produce superhydrophobic surface can be used in many fields.  相似文献   

17.
Ordered, hierarchical (triple-scale), superhydrophobic, oleophobic, superoleophobic, and amphiphilic surfaces on poly(methyl methacrylate) PMMA polymer substrates are fabricated using polystyrene (PS) microparticle colloidal lithography, followed by oxygen plasma etching-nanotexturing (for amphiphilic surfaces) and optional subsequent fluorocarbon plasma deposition (for amphiphobic surfaces). The PS colloidal microparticles were assembled by spin-coating. After etching/nanotexturing, the PMMA plates are amphiphilic and exhibit hierarchical (triple-scale) roughness with microscale ordered columns, and dual-scale (hundred nano/ten nano meter) nanoscale texture on the particles (top of the column) and on the etched PMMA surface. The spacing, diameter, height, and reentrant profile of the microcolumns are controlled with the etching process. Following the design requirements for superamphiphobic surfaces, we demonstrate enhancement of both hydrophobicity and oleophobicity as a result of hierarchical (triple-scale) and re-entrant topography. After fluorocarbon film deposition, we demonstrate superhydrophobic surfaces (contact angle for water 168°, compared to 110° for a flat surface), as well as superoleophobic surfaces (153° for diiodomethane, compared to 80° for a flat surface).  相似文献   

18.
Most of the artificial superhydrophobic surfaces that have been fabricated to date are not biodegradable, renewable, or mechanically flexible and are often expensive, which limits their potential applications. In contrast, cellulose, a biodegradable, renewable, flexible, inexpensive, biopolymer which is abundantly present in nature, satisfies all the above requirements, but it is not superhydrophobic. Superhydrophobicity on cellulose paper was obtained by domain-selective etching of amorphous portions of the cellulose in an oxygen plasma and subsequently coating the etched surface with a thin fluorocarbon film deposited via plasma-enhanced chemical vapor deposition using pentafluoroethane as a precursor. Variation of plasma treatment yielded two types of superhydrophobicity : "roll-off" (contact angle (CA), 166.7 degrees +/- 0.9 degrees ; CA hysteresis, 3.4 degrees +/- 0.1 degrees ) and "sticky" (CA, 144.8 degrees +/- 5.7 degrees ; CA hysteresis, 79.1 degrees +/- 15.8 degrees ) near superhydrophobicity. The nanometer scale roughness obtained by delineating the internal roughness of each fiber and the micrometer scale roughness which is inherent to a cellulose paper surface are robust when compared to roughened structures created by traditional polymer grafting, nanoparticle deposition, or other artificial means.  相似文献   

19.
Plasma-based processes for surface wettability modification   总被引:1,自引:0,他引:1  
In this article, we describe a method to create rough features on silicon surfaces by reactive etching of a photoresist layer. The roughness and, consequently, the wettability of the surfaces can be modified by modifying the duration of plasma etching. Hydrophobic materials deposited on the rough silicon surface can be modified until a superhydrophobic behavior is obtained, whereas hydrophilic materials become more hydrophilic. The elaboration technique described herein offers an inexpensive and rapid method for the creation of tunable roughness on silicon surfaces with large areas.  相似文献   

20.
The article reports on a very simple method to fabricate superhydrophobic surfaces with Cu-Zn alloy via changing the local oxygen concentration and formation of oxygen difference cell, which can be readily realized by covering or contacting the Cu-Zn alloy surface with a glass slide. This superhydrophobic film comes from the formation of a flower-like hierarchical structure due to the accelerated alloy etching. In contrast, the white film grown in the un-covered area showed a much lower hydrophobicity due to its different morphology. These superhydrophobic surfaces or superhydrophobic-hydrophobic surfaces are expected to find applications in making self-cleaning alloy surface, in metal anticorrosion, and in biomineralization, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号