首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 films with a thickness of 75 ± 5 nm (anatase) were formed on SnO2-film (580 ± 80 nm) coated soda-lime glass substrates (SnO2/SL-glass) by a sol-gel method. Although the photocatalytic activity for CH3CHO oxidation (ex > 300 nm) significantly exceeded that of a standard TiO2/quartz sample, it decayed with illumination time (t) at t > 0.75 h. Stripes of anatase TiO2 films of 40 nm in thickness and 1 mm in width were prepared on the SnO2/SL-glass substrate in a 1-mm pitch by photolysis of an organically modified sol-gel film. The TiO2 patterning further increased the photocatalytic activity by a factor of 4.1 as compared to the non-patterned sample, and it was also maintained at 0 < t < 2 h. The flat band potentials of the TiO2 and SnO2 films are determined to be –0.34 and +0.07 V (vs. SHE), respectively, at pH = 7 by the Mott-Schottky plots. On the basis of the results, the outstanding patterning effects could be rationalized in terms of the vectorial charge separation at the interface between TiO2 and SnO2.  相似文献   

2.
本文概述了SnO2TiO2 复合半导体纳米薄膜的发展历史和研究现状,对比分析了“混合”、“核壳”和“叠层”3 种复合薄膜的结构和性能特点,着重论述了叠层结构的SnO2 /TiO2复合薄膜的光电化学和光催化特性。结合作者的研究工作,探讨了SnO2 /TiO2双层复合薄膜上下层厚度对其光催化活性的影响,指出复合薄膜光催化活性的提高可归因于电子从TiO2 向SnO2 的迁移。最后对SnO2 /TiO2复合薄膜的局限性和发展潜势做一简要分析,强调了该复合薄膜本身的应用特点。  相似文献   

3.
A rapid and simple method, the so-called stearic acid method (SAM) was developed to prepare nanostructured TiO2/SnO2 binary oxides by combustion of stearic acid precursors. The preparative process was studied by Fourier transform infrared spectroscopy (FT-IR). During the preparative process, metal precursors were dispersed in stearic acid at molecular level. Microstructure of the samples was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), BET specific surface area measurement and the results were compared with those obtained by conventional sol-gel method. The photocatalytic decomposition of methyl orange was used as a model system to determine the relative influences of the preparation method and the concentration of SnO2 on the photocatalytic activities. It was found that preparative methods affected the crystalline structure of TiO2/SnO2 powders and the anatase phase of TiO2 was stabilized by the addition of SnO2 in SAM. The samples prepared by SAM showed better dispersity, larger specific surface area and the TiO2/SnO2 (r=0.15, SAM) catalyst showed higher photocatalytic activity than Degussa P25.  相似文献   

4.
可磁分离二氧化钛光催化剂的制备及其光催化性能   总被引:1,自引:0,他引:1  
通过液相催化相转化的方法制备了一种可磁分离的光催化剂TiO2/SiO2/NiFe2O4(TSN),这种光催化剂显示出了超顺磁性,能够通过外加磁场方便的实现催化剂在水中的分离与回收。该光催化剂的X-射线衍射和TEM结果表明:纳米TiO2颗粒包裹在磁性颗粒-SiO2/NiFe2O4(SN)的周围形成TiO2层。利用光催化降解甲基橙的效果来考察了这种光催化剂的活性,结果表明:在NiFe2O4和TiO2之间包覆一层无定型的SiO2,可以显著的提高催化剂的脱色效果,3次循环后,仍能保持良好的催化活性。  相似文献   

5.
玻璃微珠/Ag/TiO2可见光催化剂的制备与表征   总被引:1,自引:0,他引:1  
通过离子交换法将Ag纳米颗粒负载于玻璃微珠的表面及浅表层,并以钛酸四丁酯的乙醇溶液为前驱体,将TiO2负载于包含银的玻璃微珠表面,制得一种玻璃微珠/Ag/TiO2复合光催化剂。由于纳米银的表面等离子体吸收效应,该复合光催化剂具有一定的可见光响应特性。利用XRD、SEM对样品进行表征,可发现玻璃微珠表面形成一层均匀多孔的锐钛矿TiO2,其粒径均在50 nm左右。由漫反射光谱可得出该催化剂具有较强的可见光吸收,并在降解甲基橙溶液的试验中表现出较好的可见光催化活性。  相似文献   

6.
氮掺杂TiO2光催化剂的制备及可见光催化性能研究   总被引:7,自引:0,他引:7  
在溶胶-凝胶法基础之上,以尿素为氮源,通过较温和的反应条件来制备氮掺杂TiO2光催化剂。以亚甲基蓝为模型化合物、日光色镝灯为光源,探索了其可见光光催化性能;并用XRD、低温氮气吸附-脱附技术、UV-Vis等表征了其结构特征;同时以对苯二甲酸为探针分子,结合化学荧光技术研究了光催化体系中·OH自由基的变化规律,进一步验证了其光催化活性规律。结果表明:氮掺杂能引起TiO2光催化剂的激发吸收光谱明显红移并具较好的可见光响应性;在不同煅烧温度和尿素/钛酸丁酯物质的量的比  相似文献   

7.
Anatase TiO2 as a promising photocatalyst has been widely employed in the decontamination treatment of polluted water, air purification and water splitting. Coupling TiO2 with other semiconductor materials could further enhance the photocatalytic activity. Here, we successfully synthesized the SnOz/TiO2 catalyst by depositing SnO2 particles on the anatase TiO2 {105} facets through a gas phase oxidation process. The SnOz/TiO2 catalyst shows higher photocatalytic activity for decomposition of MB than that of the pure YiO2 catalyst. The enhanced photo- catalytic activity can be attributed to the efficient charge separation since TiO2 and SnO2 catalyst have staggered energy level.  相似文献   

8.
Recently, environmental disruption is proceeding on a global scale through the consumption of huge amounts of fossil fuels and the emission of various chemical substances. However, these substances resist bio-treatment. TiO2 generates electrons and holes by irradiation with light. Most organic micro-pollutants, including dioxins, are decomposed into carbon dioxide and water by the effect of the holes with high oxidative potential. By using such a photocatalytic reaction, various applications are feasible for environmental cleanup. In general, TiO2 powder has been utilized as photocatalyst, although TiO2 powder photocatalyst has several disadvantages: (1) it is difficult to handle, (2) photocatalytic reaction is slow and it takes a lot of time for treatment and (3) it is difficult to apply to plastics and textiles, because the photocatalyst decomposes them. We have developed a photocatalyst suitable for practical use and have developed high-activity photocatalysts such as TiO2 photocatalytic transparent film, photocatalytic silica-gel, apatite-coated TiO2 photocatalyst usable for plastics and textiles, photocatalytic paper, photocatalytic blue charcoal and photocatalytic oxygen scavenger. The application of these high-activity photocatalysts has been studied in deodorization, anti-bacterial, self-cleaning, anti-stain, water treatment, air purification such as photocatalytic decomposition of dioxins and VOC, and NO x removal. Now various photocatalytic articles using these new photocatalyst materials are on the market in Japan. Photocatalytic technology can create many valuable products for environmental use all over the world.  相似文献   

9.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

10.
This study was focused on the photocatalytic activity of polyaniline (Pani)/iron doped titanium dioxide (Fe–TiO2) composites for the degradation of methylene blue as a model dye. TiO2 nanoparticles were doped with iron ions (Fe) using the wet impregnation method and the doped nanoparticles were further combined with Pani via an in situ polymerization method. For comparison purposes, Pani composites were also synthesized in the presence undoped TiO2. The photocatalyst and the composites were characterized by standard analytical techniques such as FTIR, XRD, SEM, EDX and UV–Vis spectroscopies. Fe–TiO2 and its composites exhibited enhanced photocatalytic activity under ultraviolet light irradiation. Improved photocatalytic activity of Fe–TiO2 was attributed to the dopant Fe ions hindering the recombination of the photoinduced charge carriers. Pani/Fe–TiO2 composite with 30?wt.% of TiO2 nanoparticles achieved 28% dye removal and the discoloration rate of methylene blue for the sample was 0.0025?min?1. FTIR, XRD, SEM, EDX and UV–Vis spectroscopies supported the idea that Fe ions integrated into TiO2 crystal structure and Pani composites were successfully synthesized in the presence of the photocatalyst nanoparticles. The novelty of this study was to investigate the photocatalytic activity of Pani composites, containing iron doped TiO2 and to compare their results with that of Pani/TiO2.  相似文献   

11.
Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO2 and its SnO2/SnS2 heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO2 resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS2 content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics.  相似文献   

12.
The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor.  相似文献   

13.
A stable metalloporphyrin sensitized TiO2 (Degussa P25) photocatalyst was prepared by using trans-dihydroxo[5,10,15,20-tetraphenylporphyrin]tin(IV) (SnP) as a sensitizer in a simple impregnation process. The solid diffuse reflectance ultraviolet-visible (UV-vis) spectrum of the SnP sensitized TiO2 photocatalyst (SnP-TiO2) indicated that there existed interaction between SnP and TiO2. It was found that SnP-TiO2 exhibited an enhanced visible light photocatalytic activity as compared with that over P25 for the degradation of 4-nitrophenol (4-NP) and methyl orange (MO) in aqueous solutions. The mechanism exploration showed that the degradation of MO and 4-NP experienced two different ways, that is, MO was photodegraded by reactive oxygen species and 4-NP was directly photodegraded by the excited state of SnP. Furthermore, it was found that the loading content of SnP had an important influence on the photocatalytic activity of TiO2. The maximum photocatalytic efficiency was achieved when the contents of SnP were 25 mg and 30 mg per gram TiO2 for MO and 4-NP, respectively. Importantly, SnP-TiO2 was particularly stable and the photocatalytic activity was hardly decreased after being recycled seven times in the presence of oxygen, which could be attributed to the easy reductive regeneration of SnP.  相似文献   

14.
利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能。结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优异的电子传输性能及较好吸附特性。不同方法制备TiO2-GE复合催化剂的光催化活性也存在较大差别。原位制备的TiO2-GE复合光催化剂表现出最佳的光催化活性。  相似文献   

15.
Sb2S3/Bi2S3 doped TiO2 were prepared with the coordination compounds [M(S2CNEt)3] (M=Sb, Bi; S2CNEt=pyrrolidinedithiocarbamate) as precursors via gel-hydrothermal techniques. The doped TiO2 were characterized by XRD, SEM, XPS and UV-vis diffuse reflectance means. The photocatalyst based on doped TiO2 for photodecolorization of 4-nitrophenol (4-NP) was examined. The optimal Bi2S3/Sb2S3 content, pH and different doped techniques have been investigated. Photocatalytic tests reveal that M2S3 doped TiO2 via the gel-hydrothermal route performs better photocatalytic activity for photodegradation reaction of 4-nitrophenol (4-NP).  相似文献   

16.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

17.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC_2纳米碳化物涂层,并以所得TaTiC_2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta_2O_5/TiO_2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta_2O_5/TiO_2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC_2晶相存在且具有纳米级的颗粒尺寸。中空Ta_2O_5/TiO_2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO_2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTi∶nTa=2.5∶1.5时,相应的中空Ta_2O_5/TiO_2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

18.
以TiO2纳米粒子为主催化剂, 采用“浸渍-还原法”构筑了铜、镍共负载的二氧化钛基光催化系统。以苯为起始原料, H2O2为氧化剂, 研究了Cu/Ni助催化剂对TiO2可见光催化制取苯酚性能的影响并对Cu/Ni助催化剂的作用机制进行了探讨。结果表明, 在可见光照射下, 纯TiO2纳米粒子对苯氧化制取苯酚反应没有催化活性。铜、镍的引入可以明显地增强TiO2可见光催化制取苯酚的活性。当使用负载有铜、镍的TiO2作为催化剂时, 苯酚的产率可达到18%。结果还表明Cu、Ni之间存在着很强的协同作用。在该协同作用下, Cu、Ni共负载的TiO2纳米粒子表现出了较单一金属负载的TiO2纳米粒子高得多的光催化活性。  相似文献   

19.
以钛粉、钽粉为原料,炭黑作为反应性模板,通过熔盐法在炭黑表面原位生长了TaTiC2纳米碳化物涂层,并以所得TaTiC2/C复合物为碳化物前驱体,再经可控氧化制备出中空Ta2O5/TiO2复合光催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射(DRS)及N2物理吸附等手段对所制备的光催化剂进行形貌、显微结构及孔结构表征。以高压汞灯为紫外光源,以亚甲基蓝为目标降解物,通过光催化降解实验评价中空Ta2O5/TiO2复合光催化剂的光催化活性。结果表明,熔盐法生长碳化物涂层厚度均匀(20~30 nm),碳化物主要以TaTiC2晶相存在且具有纳米级的颗粒尺寸。中空Ta2O5/TiO2复合光催化剂同时具有200 nm左右的中空大孔结构及壳层10 nm左右的介孔结构。中空大孔和介孔的存在提高了所制备催化剂对亚甲基蓝的吸附能力。此外,TiO2与Ta2O5通过电子能带结构的耦合,有效提高了光生电子和空穴的分离效率,从而显著提高了光催化活性。nTinTa=2.5∶1.5时,相应的中空Ta2O5/TiO2复合光催化剂表现出最佳的光催化活性,对亚甲基蓝的紫外光催化降解率高达97%。  相似文献   

20.
以TiO2纳米粒子为主催化剂,采用"浸渍-还原法"构筑了铜、镍共负载的二氧化钛基光催化系统。以苯为起始原料,H2O2为氧化剂,研究了Cu/Ni助催化剂对TiO2可见光催化制取苯酚性能的影响并对Cu/Ni助催化剂的作用机制进行了探讨。结果表明,在可见光照射下,纯TiO2纳米粒子对苯氧化制取苯酚反应没有催化活性。铜、镍的引入可以明显地增强Ti02可见光催化制取苯酚的活性。当使用负载有铜、镍的TiO2作为催化剂时,苯酚的产率可达到18%。结果还表明Cu、Ni之间存在着很强的协同作用。在该协同作用下,Cu、Ni共负载的TiO2纳米粒子表现出了较单一金属负载的TiO2纳米粒子高得多的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号