首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
采用紫外光谱法和荧光光谱法研究了6-氨基-5-氰基-3-甲基-4-(3-硝基苯)-1-苯基吡唑[3,4-b]并吡啶(6A)与人血清白蛋白(HSA)的结合作用,利用同步荧光法和三维荧光法研究了6A与HSA作用前后人血清白蛋白的构象变化。观测到生理pH7.4条件下6A使HSA的紫外吸收峰增强,特征荧光峰猝灭。Stern-Volmer曲线显示,6A对HSA的荧光猝灭可能是一个单一的静态猝灭过程,并且得出18℃和37℃时的结合位点数和结合常数。根据F rster非辐射转移理论可求出6A与HSA作用距离r=3.73 nm;根据基本热力学参数ΔH、ΔS和ΔG判断6A和HSA主要通过氢键和范德华力发生相互作用。  相似文献   

2.
合成了2-(4-甲基苯基)-3-(N-乙酰基)-5-(2-羟基苯基)-1,3,4-噁唑啉(MPAHO),并用核磁共振波谱法和红外光谱法对其进行了表征。采用荧光光谱技术研究了MPAHO与人血清白蛋白(HSA)的相互作用。结果表明:MPAHO对HSA有较强的荧光猝灭作用,根据Stern-Volmer方程得到的荧光猝灭常数,可判断由于与MPAHO反应而导致HSA的荧光猝灭均属于静态猝灭。采用位点结合模型公式和Frster非辐射能量转移理论计算了结合常数、结合位点数、结合距离。从计算得到的热力学参数焓变ΔH和熵变ΔS,推断MPAHO与HSA之间的作用力为静电引力。并应用同步荧光光谱和三维荧光技术研究了MPAHO对HSA构象的影响。  相似文献   

3.
3-溴丙酮酸与人血清白蛋白相互作用的光谱学研究   总被引:2,自引:0,他引:2  
运用荧光光谱、紫外可见吸收光谱和圆二色光谱法研究了抗肿瘤药物3-溴丙酮酸(3-Bromopyruvic acid,3-BrPA)与人血清白蛋白(Human serum albumin,HSA)的相互作用.3-BrPA对HSA的猝灭机制属于静态猝灭,并发生分子间非辐射能量转移.热力学数据显示,二者之间的作用力主要为静电作用;同步荧光光谱表明,3-BrPA与蛋白质中接近色氨酸残基的区域发生了相互作用;荧光光谱研究发现,Zn2+存在时3-BrPA对HSA的猝灭程度进一步增强;圆二色光谱法研究蛋白二级结构结果显示,3-BrPA对HSA的结构影响非常小.  相似文献   

4.
在模拟人体生理条件下,应用紫外吸收光谱、荧光光谱和同步荧光光谱法研究高圣草素-7-O-β-D-芹糖基(1→2)-β-D-葡萄糖苷(HAG)与牛血清白蛋白(BSA)及人血清白蛋白(HSA)的结合作用。结果表明:HAG对BSA和HSA的内源荧光均有显著的猝灭作用,且猝灭机理主要为静态猝灭。HAG与BSA和HSA的结合常数K分别为3.03×104L.mol-1和6.22×104L.mol-1,结合位点数n分别为0.858和0.911,结合距离r分别为2.88 nm和3.09 nm,其作用力以氢键和范德华力为主。利用同步荧光技术考察了HAG对BSA和HSA构象的影响。  相似文献   

5.
杨露露  杨雾  伍智蔚  易忠胜 《化学通报》2017,80(2):185-190,207
利用分子模拟、荧光光谱、紫外吸收光谱等方法,研究了4-羟基-2,2’,3,4’-四溴二苯醚(4-OHBDE-42)与人血清白蛋白(HSA)的相互作用。三维荧光分析表明,4-OH-BDE-42的存在降低了HSA的荧光强度,且使HSA的微环境和构象发生变化。荧光光谱和紫外吸收光谱显示,4-OH-BDE-42与HSA结合后显著猝灭了HSA的内源性荧光,猝灭机制为静态猝灭与非辐射能量转移。结合常数Ka106L·mol-1,表明两者的结合作用较强,结合距离r为3.66nm。根据热力学参数分析,ΔH0,ΔS0,即4-OH-BDE-42与HSA之间结合的主要作用力为疏水作用,这与分子对接、结合自由能分析结论一致。结合自由能贡献分析表明,LYS199、GLU292、ARG257、ARG218、ALA291、HIS242为4-OH-BDE-42与HSA结合的关键氨基酸残基。  相似文献   

6.
合成了一种新化合物2-甲基-2,4-二乙氧羰基-6-三氟甲氧基-1,2-二氢喹啉(M DTDQ),采用共振光散射法(RLS)、荧光光谱法、紫外光谱法以及电化学阻抗法(EIS)研究了MDTDQ与人血清白蛋白(HSA)的作用机理。电化学阻抗及共振光散射光谱分析表明HSA与MDTDQ发生结合形成了复合物;MDTDQ对HSA有荧光猝灭作用,由Stern-Volmer方程以及紫外吸收光谱判断其猝灭过程主要为静态猝灭;通过双对数方程计算出298 K,304 K,310 K时两者的结合常数及其相应的结合位点数;根据热力学参数方程计算出△H、△S和△G的值分别为-64.28 k J/mol,-131.70 J·mol-1·K-1,-24.95k J/mol,推断两者之间的作用力类型主要是氢键和范德华力;由Frster非辐射能量转移理论得到MDTDQ与HSA的结合距离为2.85 nm;同步荧光光谱数据表明MDTDQ引起了HSA构象的变化。采用分子模拟对接分析了MDTDQ与HSA的结合,所得结论与实验研究结果一致。  相似文献   

7.
采用具有天然抗肿瘤活性的药物苦参碱为配体,与Fe(III)反应得到黄色的离子型苦参碱Fe(III)化合物[H-Matrine][FeCl4],用X射线单晶衍射分析法确定了配合物的结构,并在模拟生理条件下,利用紫外光谱法、荧光光谱法、同步荧光光谱和圆二色谱法研究了化合物[H-Matrine][FeCl4]与人血清白蛋白(HSA)的相互作用。结果表明:[H-Matrine][FeCl4]对HSA的荧光产生猝灭作用,猝灭机制为静态猝灭;[H-Matrine][FeCl4]与HSA在不同温度下的结合常数K和结合位点数n,及其相关热力学参数ΔH、ΔG、ΔS,室温时分别为:1.03×106L·mol-1、1.24、-68.63KJ·mol、-34.30KJ·mol和114.05J·mol,且其相互作用力主要是静电作用力。同步荧光光谱的结果表明:[H-Matrine][FeCl4]与HSA的结合位点靠近色氨酸,并使色氨酸的疏水性减弱。  相似文献   

8.
在模拟人体生理条件下,采用紫外光谱法、荧光光谱法和同步荧光光谱法研究查尔酮、4′-甲氧基查尔酮和4′-氯查尔酮与人血清白蛋白(HSA)的相互作用及其构效关系。实验表明:三种查尔酮类化合物对HSA的荧光猝灭机制主要为静态猝灭,与HSA均形成1∶1复合物,结合常数K分别为2.50×104、0.697×104和0.277×104 L.moL-1,结合距离r分别为3.78、3.93和4.25nm,其作用力均以氢键和范德华力为主。查尔酮类化合物中取代基的不同对其与HSA的结合产生影响,其作用力大小依次为查尔酮>4′-甲氧基查尔酮>4′-氯查尔酮。  相似文献   

9.
合成了2-乙基-3-(3-硝基苯基)喹唑啉-4-酮(ENPQO),用紫外光谱法、荧光光谱法、荧光偏振法、离子强度法及分子模拟法研究了ENPQO与小牛胸腺DNA(ct DNA)的相互作用。紫外光谱法显示ct DNA与ENPQO作用后,引起ENPQO紫外吸收光谱的增色效应;在以吖啶橙(AO)为荧光探针的实验中,随着ENPQO浓度的增加,ct DNA-AO体系的荧光被猝灭,其猝灭过程主要是静态猝灭,ENPQO对ct DNA-AO体系的荧光偏振基本无影响;不同浓度的Na Cl溶液未削弱ENPQO对ct DNA-AO的猝灭程度。以上结果均表明ENPQO与ct DNA之间的作用方式主要为沟槽结合。利用分子模拟对接技术预测了ENPQO与ct DNA的结合最优构象,与光谱实验结果一致。  相似文献   

10.
利用分子对接、分子动力学模拟、荧光光谱、紫外光谱及同步荧光光谱法研究了2,3,3′-三氯联苯(PCB-20)与人血清白蛋白(HSA)的相互作用。分子对接结果表明,PCB-20与HSA通过疏水作用力稳定结合于HSA的疏水空腔内。光谱法实验结果表明,PCB-20通过与HSA形成HSA-PCB20复合物从而对HSA具有荧光猝灭作用,猝灭原因是静态猝灭和非辐射能量转移,热力学参数也表明两者结合的主要驱动力为疏水作用力,计算模拟与实验结果吻合度较高。分子动力学模拟结果表明,PCB-20能够与HSA稳定结合,且与同步荧光光谱实验共同证明其对HSA的构象变化产生了一定影响。  相似文献   

11.
The binding characteristics between 2,5-di-[2-(3,5-bis(2-pyridylmethyl)amine -4-hydroxy-phenyl) ethylene] pyrazine (1) or its complex (1-Zn) and serum albumins were studied by fluorescence spectroscopy in pH 7.4 aqueous solution. 1-Zn emitted weak fluorescence at 580 nm in a pH 7.4 Tris-HCl buffer solution when excited at 435 nm, however, the fluorescence intensity increased upon addition of serum albumins with the blue shift of emission peak to 524 nm. The binding constants were estimated as 8.40 x 10(7) and 3.03 x 10(6)mol(-1)L for bovine serum albumin (BSA) and human serum albumin (HSA) respectively, and the number of binding sites was 1 for each. The quenching mechanism of fluorescence of serum albumins by 1-Zn was considered as a static quenching process. The binding distance between 1-Zn and serum albumins and the energy transfer efficiency were obtained based on the theory of F?rester spectroscopy energy transfer. The effect of 1-Zn on the conformation of serum albumins was further analyzed using synchronous fluorescence spectrometry. The experiment results clearly showed that 1-Zn is a highly sensitive protein sensor.  相似文献   

12.
The effect of temperature on the fluorescence intensity of 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) in different solvents, has been studied in the temperature range 293–333 K. A mechanism of fluorescence quenching with increase in temperature is discussed in terms of the relative location of lowest 1(ππ*) and 3(*) states, and the energy difference between them. The non-radiative deactivation of excited state in the absence of quencher is temperature-dependent; its activation energy has been found to be 9.453–27.893 kJ mole?1. Further, the fluorescence quenching by aniline was investigated by both steady-state and time-resolved measurement (at 296 K). The quenching is found to be appreciable and shows positive deviation in the Stern–Volmer plots. This could be explained by static–dynamic quenching models. Various rate constants of the bimolecular quenching reaction have been determined by using ground-state complex formation and sphere of action static quenching model. The magnitude of these constants suggests that sphere of action static quenching model agrees very well with experimental results. Further, with the use of finite sink approximation model, it is concluded that the quenching mechanism is diffusion-limited.  相似文献   

13.
The binding of N-(p-ethoxy-phenyl)-N'-(1-naphthyl)thiourea (EPNT) to human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectra in combination with UV absorption spectroscopy and a molecular modeling method. A strong fluorescence quenching reaction of EPNT to HSA was observed, and the quenching mechanism was suggested to be static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS), were calculated according to relevant fluorescent data and the vant' Hoff equation. This indicated that a hydrophobic interaction was a predominant intermolecular force for stabilizing the complex, which is in agreement with the results of molecule modeling study. The effects of energy transfer and other ions on the binding constant were considered. In addition, synchronous fluorescence technology was successfully applied to the determination of HSA added into the EPNT solution.  相似文献   

14.
The interaction of 1-phenyl-3-(coumarin-6-yl)sulfonylurea (SU22) with bovine serum albumin (BSA) has been investigated by fluorescence quenching spectroscopy combined with UV-absorption, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy techniques under simulative physiological conditions for the first time. Fluorescence data and UV-absorption spectra revealed that the quenching mechanism of fluorescence of BSA by SU22 was a static quenching process and the number of binding sites was about 0.8858; the thermodynamic parameters (DeltaG=-29.23 kJ mol(-1), DeltaH=-47.48 kJ mol(-1), and DeltaS=-61.24 J mol(-1)K(-1)) explained that hydrogen bond and Van der Waals interaction were the main binding force stabilizing the complex. The binding average distance between SU22 and BSA was obtained (3.20 nm) on the basis of the F?rster's theory. In addition, The CD spectra and FT-IR spectra have proved that BSA secondary structure changed in the presence of SU22 in aqueous solution.  相似文献   

15.
何蔚  邹嘉佳  逯东伟  程辉  林翠梧 《应用化学》2017,34(10):1150-1160
L-组氨酸对生物有机体有着良好的亲和能力,通过修饰其化学结构以期寻找药理活性和生物利用度高的衍生物。本文将L-组氨酸分别与反式肉桂酸和对甲氧基肉桂酸反应,合成了两种组氨酸酰胺类衍生物,利用傅里叶变换红外光谱、质谱、氢谱/碳谱核磁共振谱进行了结构表征。采用分子操作环境(MOE)软件分子对接技术、荧光光谱法、同步荧光光谱法(SFS)、紫外-可见光谱法(UV-Vis),共同研究了两种衍生物分别和人血清白蛋白(HSA)相结合的机理。MOE对接结果显示,这两种衍生物与HSA的模拟结合能分别为-13.82和-16.25 kcal/mol,主要是通过范德华力和疏水作用结合在HSA亚结构域ⅡA(即siteⅠ)的疏水腔内。荧光猝灭数据表明,衍生物与HSA相互作用并形成了新的基态配合物,荧光猝灭过程为静态猝灭;不同温度(300、305和310 K)下衍生物与HSA相互作用的结合常数分别为1.773×104、6.354×10~3、1.260×10~3和5.314×10~4、4.614×10~3、1.420×10~3;由热力学参数得到衍生物与HSA的结合过程是由范德华力驱动;SFS表明,衍生物使得HSA的二级结构发生了变化。结合UV-Vis的结果可以确定,在体外生理条件下,组氨酸酰胺类衍生物均可以通过范德华力与HSA结合,并对HSA内源荧光产生静态猝灭及构象影响,这与分子对接结果一致,从而为组氨酸酰胺类衍生物药物的进一步开发提供了参考。  相似文献   

16.
A novel type of 2-(un)substituted phenyl-2,3-dihydroquinazolin-4(1H)-one (DQL) derivatives were designed and synthesized to study the impact of halogen substituents on interactions between DQL and human serum albumin (HSA) by comparison methodology. The interactions between DQL and HSA were studied by fluorescence spectroscopy. The intrinsic fluorescence of human serum albumin was quenched by DQL through a static quenching mechanism. Site marker competitive experiments showed that DQL bound to HSA in site II (subdomain IIIA). The binding constants, the numbers of binding sites and the thermodynamic parameters were measured too. The results indicated that the interactions were spontaneous, mainly through hydrophobic forces, and the substitution by halogen atoms in the benzene ring could increase the interactions between DQL and HSA. Furthermore, the binding affinity was enhanced gradually with the increasing of halogen atomic number.  相似文献   

17.
The binding of bromsulphalein (BSP) with human serum albumin was investigated at different temperatures, 298 and 308 K, by the fluorescence spectroscopy at pH 7.24. The binding constant was determined by Stern-Volmer equation based on the quenching of the fluorescence HSA in the presence of bromsulphalein. The effect of various metal ions on the binding constants of BSP with HSA was investigated. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: DeltaH and DeltaS possess small negative (9.3 kJ mol(-1)) and positive values (22.3 J K(-l)mol(-l)), respectively. The experimental results revealed that BSP has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding constants between BSP to HSA were remarkable and independent on temperature. The binding constants between HSA and BSP decreased in the presence of various ions, commonly decreased by 30-55%. The hydrophobic force played a major role in the interaction of BSP with HSA. All these experimental results and theoretical data clarified that BSP could bind to HSA and be effectively transported and eliminated in body, which could be a useful guideline for further drug design.  相似文献   

18.
The interactions between bendroflumethiazide (BFTZ) and human serum albumin (HSA) have been studied by fluorescence spectroscopy. Binding constants for drug attachment to the various binding sites of HSA have been measured at different temperatures in physiological buffer solution. The effect of metal ions on BFTZ interaction with HSA was also investigated. The thermodynamic parameters, DeltaH and DeltaS, have been calculated to be 49.28kJmol(-1)>0, and 258.83Jmol(-1)K(-1)>0, respectively. The distance between HSA and BFTZ, r, was determined to be 1.47nm based on F?rster's non-radiative energy transfer theory. The experimental results reveal that BFTZ has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. Furthermore, the binding constants between BFTZ and HSA are remarkably independent of temperature, and decrease in the presence of various ions, usually by about 30-55%. Hydrophobic interaction occurs between BFTZ and the sub-domain II A of HSA.  相似文献   

19.
Three (2E)-3-(4'-halophenyl)prop-2-enoyl sulfachlorpyridazine sodium salts(XPSCA) were synthesized. Their chemical structures were confirmed by 1H NMR and 13C NMR, electrospray ionization mass spectrometry (ESI-MS), and infrared(IR) spectroscopy. The interactions between XPSCA and bovine serum albumin(BSA) were investigated under imitated physiological condition by fluorescence quenching technique and UV-Vis absorption spectroscopy according to the Stern-Volmer equation. The results from the emission quenching at different temperatures indicate that the quenching mechanism of serum albumin by XPSCA was static quenching mechanism at low XPSCA concentrations or a combined quenching(static and dynamic) mechanism at higher XPSCA concentrations. At different temperatures, the binding constant and the binding sites of XPSCA with BSA were investigated, and the distances were evaluated according to Förster non-radiative resonance energy transfer theory. The thermodynamic parameters were calculated according to van't Hoff equation, which implies that both van der Waals interaction and hydrogen bond played major roles in stabilizing the XPSCA-BSA complexes, whereas hydrophobic interactions were secondary. Moreover, the conformational changes in BSA were analyzed by synchronous fluorescence spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号