首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1,3-Dipolar cycloaddition reactions were studied to synthesize Polyhedral oligomeric silsesquioxane (POSS)-based norbornyl imide derivatives containing izoxazoline groups in good yields. And also 1,3-dipolar cycloaddition reactions of azomethine ylides with POSS-based norbornene dipolarophiles for a synthesis of the novel POSS-based norbornane-fused spiro-1,3-indandionolylpyrrolidines are reported. All newly synthesized POSS compounds were structurally characterized by FTIR, 1H, 13C NMR, HRMS and GC/MS analyses.  相似文献   

2.
A novel series of N-heterocyclic carbene-phosphine palladium(II) complexes has been synthesized and fully characterized by IR, 1H NMR, 13C NMR, and 31P NMR spectroscopies, and elemental analysis. The new N-heterocyclic carbene (NHC)-phosphine palladium(II) complexes 3a–h have been easily prepared by the reaction of the corresponding PEPPSI (pyridine-enhanced precatalyst preparation stabilization and initiation) complexes 2a–h and triphenylphosphine in dichloromethane in high yields. These complexes were applied as catalyst precursors which efficiently catalyzed Sonogashira reactions between aryl bromides and phenylacetylene to afford the corresponding products in good yields. The bulky NHC-Pd-PPh3 complexes 3 were tested against Gram-positive and Gram-negative bacteria to study their biological activity. All the complexes exhibit antibacterial against these organisms. Investigation of the anti-acetylcholinesterase activity of the studied complexes showed that compounds 3a and 3b exhibited moderate activity at 100 μg mL?1 and product 3b is the most active.  相似文献   

3.
A novel procedure for the synthesis of various derivatives of 6H-chromeno [4, 3-b] quinolines from intramolecular Heck reaction of 2-chloro-3-(phenoxymethyl) quinolines is described in this study. Intramolecular cyclization of N-alkylated indoles was efficiently investigated as well. The reaction is catalyzed by bis (triphenylphosphine) palladium (II) dichloride in acetonitrile at 80 °C.  相似文献   

4.
《中国化学》2018,36(8):712-715
Herein, two efficient palladium‐catalyzed intermolecular oxidative coupling reactions of (Z)‐enamines with isocyanides via selective β‐C(sp2)‐H and/or C=C bond cleavage have been developed, leading to controllable chemodivergent and stereoselective construction of a wide range of (E)‐β‐carbamoylenamine derivatives containing strong intramolecular hydrogen bonds. Furthermore, possible reaction pathways for these transformations are proposed on the basis of preliminary mechanism studies.  相似文献   

5.
In this work, we describe a palladium‐catalyzed intermolecular O acylation of α‐diazoesters with ortho‐bromobenzaldehydes. The C(sp2)?H bond activation of the aldehyde is enabled by migratory insertion of a palladium carbene intermediate. The diazoesters act as modular three‐atom units to build up key seven‐membered palladacycles, which are transformed into a variety of isocoumarin derivatives upon reductive elimination. Mechanistic experiments and DFT calculations provide insight into the reaction pathway.  相似文献   

6.
陈为  于淼  焦宁 《有机化学》2010,30(3):469-473
研究了无配体、空气下Pd(OAc)2催化的Heck反应. 多种芳基碘化物、芳基溴化物可以与烯丙基醋酸酯、丙烯酸酯和苯乙烯等烯基化合物在Pd(OAc)2催化下发生Heck反应. 该反应不需要配体的加入, 在空气中就可以进行. 讨论了碱、添加剂、溶剂、催化剂等因素对反应产率的影响. 该反应的最优化条件是: Pd(OAc)2 (5 mol%)为催化剂, Ag2CO3 (0.6 equiv.)为添加剂, 以苯或甲苯为溶剂空气中回流12 h, 芳基碘化物、芳基溴化物可以顺利地与烯丙基醋酸酯、丙烯酸酯、苯乙烯等烯基化合物发生Heck反应, 以较高的产率得到目标产物.  相似文献   

7.
A palladium‐catalyzed decarboxylative benzylation reaction of α,α‐difluoroketone enolates is reported, in which the key C(α)?C(sp3) bond is generated by reductive elimination from a palladium intermediate. The transformation provides convergent access to α‐benzyl‐α,α‐difluoroketone‐based products, and should be useful for accessing biological probes.  相似文献   

8.
An environmentally benign and efficient approach for the synthesis of 4-arylcoumarins from ortho-hydroxy cinnamate ester derivatives with aryl iodides was developed in water under aerobic conditions. This transformation proceeds through a palladium catalyzed Heck-arylation/cyclization cascade reaction. The present protocol features a wide substrate scope and readily available starting materials to afford the desired products in high to excellent yields.  相似文献   

9.
A palladium‐catalyzed carbene insertion into C(sp3)?H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd0 and PdII, is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium‐catalyzed C(sp3)?C(sp3) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp3)?H bond functionalization reaction involves an unprecedented concerted metalation–deprotonation step.  相似文献   

10.
Abstract

Deactivated aryl halide 4-bromoanisole and electron poor olefin 2-ethylhexyl acrylate were shown to undergo palladium catalyzed Heck reaction with the utilization of a cost-effective, thermally robust and unexplored morpholine-based ionic liquid. The developed protocol gives an environmentally friendly process for the synthesis of 2-ethylhexyl-4-methoxy cinnamate, an important UV-B sunscreen agent.  相似文献   

11.
A hierarchical titanium dioxide microspheres-supported palladium catalyst (Pd/TiO2-350) was prepared and characterized using BET, XRD, XPS, SEM, EDX, and TEM analyses. An ICP-OES analysis of Pd/TiO2-350 further confirmed the successful Pd immobilization on TiO2 with a palladium loading of 0.1 mmol g?1. Pd/TiO2-350 efficiently catalyzed the Suzuki-Miyaura reaction of aryl iodides with arylboronic acids to give the corresponding biaryl derivatives in good to excellent yields. After the reaction, the catalyst was recovered by centrifugation and reused three times without significant loss of its catalytic activity. Moreover, the loading of palladium species further decreased to 0.001 mol%, and the total turnover number and turnover frequency of the catalyst reached as high as 99 000 and 0.57 s?1, respectively.  相似文献   

12.
A series of novel poly(thienylene vinylene) derivatives (PTVs), P20‐P24 , with imide substituents were designed and synthesized by palladium‐catalyzed Stille coupling polymerization, wherein the imide substituent density was decreased gradually, which allowed us to explicitly study the effect of electron‐deficient substituent on the optical, electrochemical, and photovoltaic properties of the PTVs. All of the four polymers showed broad absorption bands with optical bandgaps between1.66 and 1.78 eV. By reducing density of electron‐deficient imide group, the LUMO energy levels of the polymers could be tuned gradually from ?3.75 to ?3.43 eV, with HOMO levels upshifted from ?5.64 to ?5.16 eV. Bulk heterojunction solar cells with the polymers as donor and PC71BM as acceptor demonstrated very different excitons dissociation behavior. With decreasing the imide‐fused unit density, the open‐circuit voltage (VOC) values in the devices decreased from 0.78 to 0.62 V, whereas the short‐circuit currents (JSC) increased from 0 to 2.26 mA cm?2 and then decreased to 1.01 mA cm?2. By adjusting the electron‐withdrawing imide substituent density, power conversion efficiency of the PTVs‐based solar cells can be increased to four times, reached 0.86%. To the best of our knowledge, this is the first systematic study of the relationship between molecular energy level and photovoltaic properties of PTVs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4975–4982  相似文献   

13.
Two novel organic–inorganic hybrid polyfluorene derivatives, poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐[2,5‐bis(octyloxy)‐1,4‐phenylene]} (PFDOPPOSS) and poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐bithiophene} (PFT2POSS), were synthesized by the Pd‐catalyzed Suzuki reaction of polyhedral oligomeric silsesquioxane (POSS) appended fluorene, dioctyl phenylene, and bithiophene moieties. The synthesized polymers were characterized with 1H NMR spectroscopy and elemental analysis. Photoluminescence (PL) studies showed that the incorporation of the POSS pendant into the polyfluorene derivatives significantly enhanced the fluorescence quantum yields of the polymer films, likely via a reduction in the degree of interchain interaction as well as keto formation. Additionally, the blue‐light‐emitting polyfluorene derivative PFDOPPOSS showed high thermal color stability in PL. Moreover, single‐layer light‐emitting diode devices of an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration fabricated with PFDOPPOSS and PFT2POSS showed much improved brightness, maximum luminescence intensity, and quantum efficiency in comparison with devices fabricated with the corresponding pristine polymers PFDOP and PFT2. In particular, the maximum external quantum efficiency of PFT2POSS was 0.13%, which was twice that of PFT2 (0.06%), and the maximum current efficiency of PFT2POSS was 0.38 cd/A, which again was twice that of PFT2 (0.19 cd/A). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2943–2954, 2006  相似文献   

14.
《Tetrahedron letters》2014,55(50):6868-6872
A new series of 2-amino, 4-azepanone, 5-aryl substituted derivatives of pyrimidine compounds were synthesized for the first time from the commercially available 2-amino-4-hydroxypyrimidine. The key step in the reaction is a conceptually new single step palladium catalyzed cross coupling along with the deprotection of N,N-diisopropylformimidamide using bis(triphenylphosphine)palladium(II) dichloride (PdCl2(PPh3)2).  相似文献   

15.
The combination of conventional transition‐metal‐catalyzed coupling (2 e? process) and photoredox catalysis (1 e? process) has emerged as a powerful approach to catalyze difficult cross‐coupling reactions under mild reaction conditions. Reported is a palladium carbodicarbene (CDC) complex that mediates both a Suzuki–Miyaura coupling and photoredox catalysis for C?N bond formation upon visible‐light irradiation. These two catalytic pathways can be combined to promote both conventional transition‐metal‐catalyzed coupling and photoredox catalysis to mediate C?H arylation under ambient conditions with a single catalyst in an efficient one‐pot process.  相似文献   

16.
A highly efficient palladium‐catalyzed oxidative borylation of enallenes was developed for the selective formation of cyclobutene derivatives and fully‐substituted alkenylboron compounds. Cyclobutenes are formed as the exclusive products in MeOH in the presence of H2O and Et3N, whereas the use of AcOH leads to alkenylboron compounds. Both reactions showed a broad substrate scope and good tolerance for various functional groups, including carboxylic acid ester, free hydroxy, imide, and alkyl groups. Furthermore, transformations of the borylated products were conducted to show their potential applications.  相似文献   

17.
Palladium(II) complexes containing phosphorus and nitrogen donor atoms (iminophosphine), dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐2‐trifluoromethylaniline}palladium(II) 1 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐3‐trifluoromethylaniline}palladium(II) 2 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐2‐methylaniline}palladium(II) 3 , dichlorido{N‐[2‐(diphenylphosphino)benzylidene]‐3‐methylaniline}palladium(II) 4 have been successfully synthesized and fully characterized by FT‐IR and NMR (1H, 31P, 19F, and 13C) spectroscopy techniques. These complexes were first step tested in the reaction of bromobenzene and styrene to determine the optimal coupling reaction conditions and then successfully applied as catalysts for Heck cross‐coupling reactions of activated and deactivated aryl bromides with styrene derivatives and several acrylates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Directly utilizing a chemical feedstock to construct valuable compounds is an attractive prospect in organic synthesis. In particular, the combination of C(sp3)?H activation and oxidative carbonylation involving alkanes and CO gas is a promising and efficient method to synthesize carbonyl derivatives. However, due to the high C?H bond dissociation energy and low polarity of unactivated alkanes, the carbonylation of unactivated C(sp3)?H bonds still remains a great challenge. In this work, we introduce a palladium‐catalyzed radical oxidative alkoxycarbonylation of alkanes to prepare numerous alkyl carboxylates. Various alkanes and alcohols were compatible, generating the desired products in up to 94 % yield. Remarkably, ethane, a constituent of natural gas, could be employed as a substrate under the standard reaction conditions. Preliminary mechanistic studies revealed a probable palladium‐catalyzed radical process.  相似文献   

19.
An efficient domino cyclization method for the construction of aza‐podophyllotoxin/aza‐conidendrin derivatives has been established. Reactions of different dienes with aryl halides in the presence of a palladium catalytic system produced different kinds of podophyllotoxin derivatives through a highly regioselective C? H functionalization. Treatment of dienes with aryl halides that have electron‐withdrawing substituents on the phenyl ring created aza‐podophyllotoxin derivatives by means of the functionalization of the C? H bonds ortho to the C? halide bonds of the incoming aryl halides. The reaction of dienes with 1‐iodobenzene or aryl halides that incorporate electron‐donating groups produced aza‐conidendrin derivatives by means of the functionalization of both sp3 C? H and sp2 C? H bonds. The regioselective C? H functionalization for the formation of different pseudo‐podophyllotoxin/‐conidendrin derivatives is proven by analyses of the 1H NMR spectra of the products and selective X‐ray analyses of the structures of the products. Thus, the palladium‐catalyzed domino cyclization of 1,6‐dienes for the preparation of aza‐podophyllotoxin/aza‐conidendrin derivatives can be controlled by selectively controlling the C? H functionalization.  相似文献   

20.
We synthesized an AB2‐type monomer, 4‐{4‐[di(4‐aminophenyl)methyl]phenoxy}phthalic acid, which contained one phthalic acid group and two aminophenyl functionalities. The direct self‐polycondensation of the AB2‐type monomer in the presence of triphenylphosphite as an activator afforded a hyperbranched poly(ether imide) with a large number of terminal amino groups. This polymer was characterized with 1H NMR and IR spectroscopy. The degree of branching of the hyperbranched poly(ether imide) was approximately 56%, as determined by a combination of model compound studies and an analysis of 1H NMR spectroscopy integration data. The terminal amino groups underwent functionalization readily. The solubility and thermal properties of the resulting polymers depended on the nature of the chain end groups. In addition, the hyperbranched poly(ether imide) was grafted with polyhedral oligomeric silsesquioxane (POSS). Transmission electron microscopy analysis revealed that the grafted POSS molecules aggregated to form a nanocomposite material. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3726–3735, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号