首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This research presents a simple index-guiding square photonic crystal fibers (SPCFs) that has a silica core surrounded by air hole with two different diameters. It is demonstrated that the designed two-different-size hole-arrayed index-guiding SPCFs has a ultra-flattened chromatic dispersion of 0 ± 0.9 ps/(nm·km) in a wavelength range of 1.34 to 1.61 μm and low confinement loss of less than 10−7 dB/m in a wavelength range of 1.2 to 1.7 μm. It has also been shown that the proposed SPCFs show reasonable dispersion tolerance.  相似文献   

2.
A design of octagonal photonic crystal fiber (OPCF) with F-doped elliptical hole core is proposed. The proposed design is simulated through an full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Numerical results show that the designed OPCF has the ultra-flattened dispersion of 0 ± 0.4 ps/(nm km) from 1.34 μm to 1.72 μm (380 nm band) which covers S, C and L communication bands, a low confinement loss of less than 10−7 dB/m in the same wavelength range, and the corresponding birefringence and nonlinear coefficient are about 2.12 × 10−2 and 50.67 W−1 km−1 at 1.55 μm, respectively. The proposed OPCF may have great potential applications in super-continuum (SC) generation, dispersion compensation, polarization maintaining and so on.  相似文献   

3.
The present article describes novel highly nonlinear photonic crystal fibers (HN-PCFs) with flattened chromatic dispersion and low confinement losses. The proposed design has been simulated based on the finite-difference method with anisotropic perfectly matched layers absorbing boundary condition. It is proved that the design novel HN-PCFs is obtained a nonlinear coefficient greater than 45 W−1 km−1 and low dispersion slope −0.009 ps/(nm2.km) at 1.55 μm wavelength. In addition, results from numerical simulation show that the ultra-flattened dispersion of 0 ± 0.65 ps/(nm.km) can be obtained in a 1.36-1.62 μm wavelength range with confinement losses lower than 10−7 dB/m in the same wavelength range. Another advantage of the proposed HN-PCFs is that it possessed modest number of design parameters.  相似文献   

4.
A microstructured polymer optical fiber (mPOF) with both ultra-flattened near-zero chromatic dispersion and high birefringence based on Topas cyclic olefin copolymer is designed. Three rings of uniform elliptical air holes are arranged in triangular lattice in the cladding and an extra small defected hole is introduced in the fiber core. Guided modes, dispersion, birefringence and mode confinement properties of the designed mPOF are investigated by using the full-vector finite element method. Dispersion values between ± 0.5 ps/km/nm over the wavelength 1.1-1.7 μm and high birefringence of the order of 10−3 are obtained for the optimized fiber structure. Low confinement losses and small effective mode area are obtained at the same time. The relatively simple architecture of the proposed Topas mPOF can be fabricated by our extrusion-stretching techniques.  相似文献   

5.
Proposed in this paper is a simple square-lattice photonic crystal fiber (PCF) with nearly zero flattened dispersion (NZFD) over a wide wavelength span. We make a trade-off between the coupling efficiency and the effective mode area in order to obtain relatively low confinement loss and high nonlinearity. Via full-vector finite element method with hybrid edge/node elements, over 1137–1710 nm, the dispersion coefficient is 0.3 ± 0.3 ps/(km nm), the confinement loss is relatively low, in level of 10−7–10−4 dB/km and the effective mode area remains 5.88–6.59 μm2.  相似文献   

6.
This paper proposes and demonstrates a novel type of silica index guiding holey fibers (IGHFs) that has two cladding layers at the defective innermost structures. The proposed IGHFs exhibit remarkable chromatic dispersion properties such as nearly-zero and flattened dispersion over a wide spectral range and single mode guidance along with very low confinement loss. The numerical results indicate that 5 air-hole rings of nearly zero ultra-flattened dispersion single mode IGHFs can be designed with desire flattened dispersion of over a 340 nm bandwidth including the entire band of interest with low confinement loss of less than 10−6 dB/m.  相似文献   

7.
In this paper, a highly birefringent index-guiding photonic crystal fiber with low confinement loss is proposed by enlarging the central row of air holes in the structure. By employing the multipole method, properties of this structure, including the effective index, birefringence and confinement loss, are investigated. Simulation results indicate that high birefringence of 1.65 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−6 dB/km can be achieved at the same wavelength. Moreover, the impacts of air hole sizes on birefringence and confinement loss are also analyzed in detail.  相似文献   

8.
A large mode area photonic crystal fiber (LMA PCF) with an effective area of 180 μm2 is used to generate a high energy, micro-joule range, flat, octave spanning supercontinuum (SC) extending from ~ 600 nm to ~ 1720 nm. A train of femtosecond pulses from a widely-tunable parametric amplifier pumped by a Ti:Sapphire regenerative amplifier system are coupled into a 20 cm length of LMA PCF generating a SC of 1.4 μJ energy. We present an experimental study of the high energy SC as a function of the input power and the pumping wavelength. The spectrum obtained at a pump wavelength of 1260 nm presents spectral flatness variation less than 12 dB over more than 1.1 octave bandwidth. The physical processes behind the SC formation are described in the normal and the anomalous dispersion regions. Our experimental results are successfully compared with the numerical solution of the nonlinear Schrödinger equation.  相似文献   

9.
We present a new design study of ultra-flat near zero dispersion PCF with selectively liquid infiltration with all uniform air-holes in the cladding. The dependence of the individual parameters upon dispersion has been presented in detail. The study establishes that varying Λ influences the total dispersion, whereas d has the desired effect of modifying the dispersion slope, and varying nL modifies both. With the above study we could achieve near zero ultra-flat dispersion as small as 0 ± 0.41 ps/nm/km for broad wavelength range of 452 nm. The optimized near zero ultra-flat dispersion PCF has been targeted for smooth and flat broadband spectrum supercontinuum generation (SCG) for near Infrared (IR) applications. Broadband SC generations corresponding to three different designs of ultra-flat dispersion fiber have been carried out by using picoseconds pulse laser around the first zero dispersion wavelengths (ZDW). The numerical results show that FWHM of around 400 nm with less than a meter long fiber can be achieved with these fibers that cover most of the communication wavelength bands. The proposed design study will be applicable for applications in the field of tomography, Dense Wavelength Division Multiplexing (DWDM) system, spectroscopy, etc.  相似文献   

10.
Experimental results on supercontinuum generation in photonic crystal fibre tapers using pump pulses of 7 ns duration at 532 nm are presented. Photonic crystal fibre tapers with the first wavelength of zero dispersion around 532 nm were fabricated. The generation of supercontinuum was investigated in normal and anomalous dispersion regimes. Supercontinuum spectra spanning more than 400 nm in the visible region are reported.  相似文献   

11.
Spectral broadening of spectrum-sliced amplified spontaneous emission (SS-ASE) in highly nonlinear, dispersion-shifted fiber in different dispersion regimes is investigated experimentally. We find that, the spectral noise of the amplified SS-ASE pump from Er3+-doped fiber amplifier seeds the spectral broadening via four-wave mixing or modulation instability. Stimulated Raman scattering, red-shifted Raman solitons, and blue-shifted dispersion waves all enhance the broadening of the spectrum. The effect of the polarization state of pump on supercontinuum generation is also investigated, and it is found that, linear polarization is more efficient than random polarization for pumping supercontinuum. Supercontinuum with −10 dB bandwidth of 200 nm is generated by launching linearly polarized pump with 33.5 dB m power into anomalous dispersion regime near to zero dispersion wavelength of fiber.  相似文献   

12.
We propose a high birefringence and low loss index-guiding photonic crystal fiber (PCF) using the complex unit cells in cladding by the finite-element method. Results show that the birefringence and confinement loss in such PCF fiber is determined not only by the whole cladding asymmetry but also the shape of the PCF core. The maximal modal birefringence and lowest confinement loss of our proposed structures at the excitation wavelength of λ = 1550 nm can be achieved at 8.7 × 10−3 and 5.27 × 10−5 dB/km, respectively.  相似文献   

13.
A double-cladding microstructured fiber (MF) is proposed in this paper. The inner cladding of this optical fiber is composed of elliptical air holes and silica. The dependence of dispersion on the diameter of the air holes, the pitch, and the axes of the elliptical holes is investigated numerically. The proposed fiber possesses an ultra flattened dispersion curve over a wide wavelength range, and its dispersion value is small. The effective mode area is approaching to 60 μm2, and the confinement loss is as low as <0.025 dB/km at 1550 nm. While choosing suitable structure parameters, an ultra dispersion-flattened MF within a broadband from1000 nm to 1900 nm can be achieved. The dispersion fluctuation is 0.6-1.0 ps/(nm·km) in all S, C and L band.  相似文献   

14.
A novel photonic crystal fiber (PCF) based on a four-hole unit is proposed in order to meet the requirements of high birefringence, negative dispersion and confinement loss in fiber-optic communication. The proposed design has been simulated based on the full vector finite element method (FVFEM) and anisotropic perfectly matched layers (APML). Analysis results show that the proposed PCF can achieve a high birefringence to the order of 10−2 at the wavelength of 1.55 μm, a large negative dispersion over a wide wavelength range and confinement losses lower than 10−9 dB/m simultaneously, which has important applications in polarization-maintaining (PM) fibers, single-polarization single-mode (SPSM) fibers, dispersion compensation fibers and so on.  相似文献   

15.
By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti:sapphire laser into the fundamental mode of photonic crystal fibre(PCF) with central holes fabricated through extracting air from the central hole,the broad and ultra-flattened supercontinuum(SC) in the visible wavelengths is generated.When the fundamental mode experiences an anomalous dispersion regime,three phases in the SC generation process are primarily presented.The SC generation(SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings.The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071,respectively.  相似文献   

16.
A new simple structure of an index-guiding highly nonlinear dispersion-flattened square photonic crystal fiber (HNDFSPCF) with low confinement losses is proposed. The results reveal that it is possible to design five-rings HNDF-SPCFs with a flattened dispersion of 0.43 ps/(nm·km), low dispersion slope of -0:02 ps/(nm2·km), low confinement loss of approximately 103 dB/m, and a large nonlinear coefficient of approximately 35W-1 km-1 at 1.55 μm. It is also observed that the confinement loss is less than 10-1 dB/m in the wavelength range of 1.2 –1.7 μm.  相似文献   

17.
This paper presents dispersion-flattened modified hexagonal photonic crystal fibers (MH-PCFs) with extremely low confinement loss. The finite difference method (FDM) with an anisotropic perfectly matched boundary layer (PML) is used to investigate the chromatic dispersion and confinement properties. It is demonstrated that it is possible to obtain an ultra-flattened dispersion of 0 ± 0:41 ps/(nm·km) in the wavelength range of 1.35–1.65 mm and an extremely low confinement loss of less than 10−4 dB/km from a four-ring MH-PCF. Effective single-mode operation of the MH-PCF is confirmed for the entire band of interest.  相似文献   

18.
复合六边形空气孔格点光子晶体光纤的色散特性分析   总被引:1,自引:0,他引:1  
提出了一种复合六边形空气孔格点光子晶体光纤,其包层是由两种不同大小的空气孔组合而构成的。利用带有良匹配层(APML)吸收边界的全矢量频域有限差分法(FDFD)对其色散特性进行了数值分析。结果表明,通过调节包层中两种不同尺寸的空气孔的大小以及孔间距这三个参量,可以得到不同水平的平坦色散曲线,甚至超低超平坦的色散曲线。在孔间距Λ取2.1μm,小尺寸空气孔直径取0.5μm,大尺寸空气孔直径取0.8μm的条件下,在1.48~1.78μm的波长范围内得到了0±0.545 ps/(km.nm)的色散。  相似文献   

19.
We investigate both theoretically and experimentally wavelength division multiplexed confocal imaging by using white light supercontinuum. We show that with the optimized pinhole diameter an axial resolution of 0.75 μm and detection efficiency of 80% can be achieved. In addition, we applied the axial WDM confocal system to 3D surface measurement and the result agreed well with that measured by commercially available surface profilometer. The measured sensitivity of the system is 3.25 nm. Finally, we demonstrated lateral confocal imaging by using supercontinuum. An effective lateral scanning range of 130 μm was obtained.  相似文献   

20.
In this paper, we present a single mode circular photonic crystal fiber (C-PCF) for broadband dispersion compensation covering 1400 to 1610 nm wavelength band over the telecommunication windows. Investigations of guiding properties are carried out using finite element method (FEM) with circular perfectly matched layer boundary condition. Numerical study reveals that a negative dispersion coefficient of about −386.57 to −971.44 ps/(nm km) is possible to obtain over the wavelength ranging from 1400 to 1610 nm with a relative dispersion slope (RDS) of about 0.0036 nm−1 at 1550 nm wavelength. In addition, the single mode behaviour of C-PCF is demonstrated by employing V parameter. According to simulation, it is found that the proposed C-PCF acts as a single mode fiber within 1340 to 1640 nm wavelength. Moreover, effective dispersion, relative dispersion slope, birefringence and confinement loss are also presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号