首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low temperature fuel cells are an attractive technology for transportation and residential applica‐tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non‐noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocat‐alysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durabil‐ity.  相似文献   

2.
Gold nanorods coated with cetyltrimethylammonium bromide (CTAB), a cationic micellar surfactant used in nanorod synthesis, were rapidly and irreversibly internalized by KB cells via a nonspecific uptake mechanism. Internalized nanorods near the cell surface were monitored by two-photon luminescence (TPL) microscopy and observed to migrate toward the nucleus with a quadratic rate of diffusion. The internalized nanorods were not excreted but formed permanent aggregates within the cells, which remained healthy and grew to confluence over a 5-day period. Nonspecific nanorod uptake could be greatly reduced by displacing the CTAB surfactant layer with chemisorptive surfactants, particularly by the conjugation of poly(ethylene glycol) chains onto nanorods using in situ dithiocarbamate formation.  相似文献   

3.
The physico‐chemical properties of colloidal particles determine their uptake into cells. For a series of microparticles only one parameter, the mechanical stiffness, was varied, whereas other parameters such as size, shape, and charge were kept constant. The uptake was monitored in situ by analyzing individual particle trajectories including the progress of endocytosis, derived from local pH measurements around each particle. Evidence is presented that soft particles with low stiffness are transported faster to lysosomes than stiffer ones.  相似文献   

4.
质子交换膜燃料电池的商业化有望在不久的将来实现更清洁的能源社会.然而,氧还原反应缓慢的反应动力学和苛刻的条件对质子交换膜燃料电池的寿命和成本产生了巨大的挑战.之前大多数铂基催化剂的设计都将重点更多地放在提高活性上.随着质子交换膜燃料电池的商业化,寿命问题也受到了更多的关注.对整个生命周期中结构演变进行深入地了解,有助于...  相似文献   

5.
Atomic-scale processes at electrode surfaces in liquid electrolytes are central elemental steps of electrochemical reactions. Detailed insights into the structure of these interfaces can be obtained with in situ scanning tunnelling and atomic force microscopy. By increasing the time resolution of these methods into the millisecond range, highly dynamic processes at electrode surfaces become directly observable. This review gives an overview of in situ studies with video-rate scanning probe microscopy techniques. Firstly, quantitative investigations into the dynamic behaviour of individual adsorbed atoms and molecules are described. These reveal a complex dependence of adsorbate surface diffusion on potential and co-adsorbed species and provide data on adsorbate–adsorbate and adsorbate–substrate interactions in a liquid environment. Secondly, results on collective dynamic phenomena are discussed, such as molecular self-assembly, the dynamics of nanoscale structures, nucleation and growth, and surface restructuring due to phase-formation processes.  相似文献   

6.
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.  相似文献   

7.
The chemical and electrochemical insertion of lithium into the spinel structure of CuCr(2)Se(4) was studied and the chemical reaction pathway was followed by ex situ X-ray diffraction on samples with different Li contents. The electrochemical reaction was investigated by in situ X-ray diffraction and in situ scanning electron microscopy. In the early steps of chemical intercalation, two phases with a different Li content coexist and Cu is extruded from the host material. After 4 days of Li intercalation, a conversion reaction is observed. The overall Li uptake is 8 Li ions per formula unit. The structural behaviour of the two intercalated phases at the early stages of intercalation is totally different. For one phase a strong expansion of the a-axis is observed while for the other phase it is only slightly affected by Li uptake. A three-step mechanism was found consisting of reduction of Se(-) followed by a Cu-Li exchange and finally a complete reduction of Cr(3+) to the metallic state accompanied by the formation of Li(2)Se. The discharge capacity of the first cycle amounts to 530 mAh g(-1) and drops to about 380 mAh g(-1) in the fifth cycle. In in situ SEM images the occurrence of Cu whiskers that partially grow out of the crystallites can be observed.  相似文献   

8.
Well-dispersed gold nanoparticles (NP) coated with tiopronin were synthesized by X-ray irradiation without reducing agents. High-resolution transmission electron microscopy shows that the average core diameters of the NPs can be systematically controlled by adjusting the tiopronin to Au mole ratio in the reaction. Three methods were used to study the NP uptake by cells: quantitative measurements by inductively coupled plasma mass spectrometry, direct imaging with high lateral resolution transmission electron microscopy and transmission X-ray microscopy. The results confirmed that the NP internalization mostly occurred via endocytosis and concerned the cytoplasm. The particles, in spite of their small sizes, were not found to arrive inside the cell nuclei. The synthesis without reducing agents and solvents increased the biocompatibility as required for potential applications in analysis and biomedicine in general.  相似文献   

9.
There has been recent interest in developing new, targeted, perfluorocarbon (PFC) droplet-based contrast agents for medical imaging (e.g., magnetic resonance imaging, X-ray/computed tomography, and ultrasound imaging). However, due to the large number of potential PFCs and droplet stabilization strategies available, it is challenging to determine in advance the PFC droplet formulation that will result in the optimal in vivo behavior and imaging performance required for clinical success. We propose that the integration of fluorescent quantum dots (QDs) into new PFC droplet agents can help to rapidly screen new PFC-based candidate agents for biological compatibility early in their development. QD labels can allow the interaction of PFC droplets with single cells to be assessed at high sensitivity and resolution using optical methods in vitro, complementing the deeper depth penetration but lower resolution provided by PFC droplet imaging using in vivo medical imaging systems. In this work, we introduce a simple and robust method to miscibilize silica-coated nanoparticles into hydrophobic and lipophobic PFCs through fluorination of the silica surface via a hydrolysis-condensation reaction with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. Using CdSe/ZnS core/shell QDs, we show that nanoscale, QD-labeled PFC droplets can be easily formed, with similar sizes and surface charges as unlabeled PFC droplets. The QD label can be used to determine the PFC droplet uptake into cells in vitro by fluorescence microscopy and flow cytometry, and can be used to validate the fate of PFC droplets in vivo in small animals via fluorescence microscopy of histological tissue sections. This is demonstrated in macrophage and cancer cells, and in rabbits, respectively. This work reveals the potential of using QD labels for rapid, preclinical, optical assessment of different PFC droplet formulations for their future use in patients.  相似文献   

10.
Aminoglycosides (including neomycin B and tobramycin) exhibit poor uptake by eukaryotic cell lines. When the amines of these natural products are converted into guanidine groups, their cellular uptake is dramatically enhanced. We have synthesized BODIPY-containing aminoglycosides and guanidinoglycosides to evaluate their cellular uptake properties. Fluorescence activated cell sorting (FACS) and fluorescence microscopy are used to compare the membrane translocation and the cellular localization of these compounds. Upon guanidinylation, the cellular uptake efficiencies of tobramycin and neomycin B are enhanced by 10-fold and 20-fold, respectively. Guanidino-neomycin B exhibits a highly efficient uptake, superior to a fluorescent poly-arginine peptide. Interestingly, the cellular uptake of this common transduction peptide is inhibited by guanidine-neomycin B, suggesting a similar uptake mechanism for both the arginine-rich peptides and the guanidinoglycosides.  相似文献   

11.
Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State‐of‐the‐art atomic resolution or in situ scanning transmission electron microscopy and electron energy‐loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single‐atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room‐temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.  相似文献   

12.
该文简述了电子显微技术的发展历程,并介绍了现代电子显微镜的新功能。针对生物纳米材料理化性能与功能应用的特殊性,结合研究实例,重点阐述运用电子显微结构表征与原位分析测试技术指导构建新颖纳米结构、揭示材料与细胞/组织相互作用并发挥功能的机制。并在此基础上,展望了电子显微技术在生物纳米材料研究领域的发展方向(大尺寸图像拼接、三维重构、动态原位实时成像)。  相似文献   

13.
Proton NMR imaging was used to investigate in situ the distribution of water in a polymer electrolyte membrane fuel cell operating on H2 and O2. In a single experiment, water was monitored in the gas flow channels, the membrane electrode assembly, and in the membrane surrounding the catalysts. Radial gradient diffusion removes water from the catalysts into the surrounding membrane. This research demonstrates the strength of 1H NMR microscopy as an aid for designing fuel cells to optimize water management.  相似文献   

14.
Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.  相似文献   

15.
A single-step LbL procedure to functionalize CTAB-capped GNRs via electrostatic self-assembly is reported. This approach allows for consistent biomolecule/GNR coupling using standard carboxyl-amine conjugation chemistry. The focus is on cancer-targeting biomolecule/GNR conjugates and selective photothermal destruction of cancer cells by GNR-mediated hyperthermia and NIR light. GNRs were conjugated to a single-chain antibody selective for colorectal carcinoma cells and used as probes to demonstrate photothermal therapy. Selective targeting and GNR uptake in antigen-expressing SW 1222 cells were observed using fluorescence microscopy. Selective photothermal therapy is demonstrated using SW 1222 cells, where >62% cell death was observed after cells are treated with targeted A33scFv-GNRs.  相似文献   

16.
The connection between quantum size effects and the surface plasmon resonance of metal nanoclusters is introduced and the pros and cons of in situ and ex situ cluster analysis methods are outlined. A new method for estimating the size of nanoclusters is presented. This method combines core/shell cluster synthesis, UV-visible spectroscopy, and Mie theory. The core/shell approach enables the estimation of metal cluster sizes directly from the UV-visible spectra, even for transition metal nanoclusters such as Pd that have no distinct surface-plasmon peak in UV-visible region. Pd/Au and Au/Pd core/shell clusters as well as Au-Pd alloy clusters are synthesized and used as test cases for simulations and spectroscopic measurements. The results of the simulations and UV-visible spectroscopy experiments are validated with transmission electron microscopy.  相似文献   

17.
18.
In situ generated fluorescent gold nanoclusters (Au‐NCs) are used for bio‐imaging of three human cancer cells, namely, lung (A549), breast (MCF7), and colon (HCT116), by confocal microscopy. The amount of Au‐NCs in non‐cancer cells (WI38 and MCF10A) is 20–40 times less than those in the corresponding cancer cells. The presence of a larger amount of glutathione (GSH) capped Au‐NCs in the cancer cell is ascribed to a higher glutathione level in cancer cells. The Au‐NCs exhibit fluorescence maxima at 490–530 nm inside the cancer cells. The fluorescence maxima and matrix‐assisted laser desorption ionization (MALDI) mass spectrometry suggest that the fluorescent Au‐NCs consist of GSH capped clusters with a core structure (Au8‐13). Time‐resolved confocal microscopy indicates a nanosecond (1–3 ns) lifetime of the Au‐NCs inside the cells. This rules out the formation of aggregated Au–thiolate complexes, which typically exhibit microsecond (≈1000 ns) lifetimes. Fluorescence correlation spectroscopy (FCS) in live cells indicates that the size of the Au‐NCs is ≈1–2 nm. For in situ generation, we used a conjugate consisting of a room‐temperature ionic liquid (RTIL, [pmim][Br]) and HAuCl4. Cytotoxicity studies indicate that the conjugate, [pmim][AuCl4], is non‐toxic for both cancer and non‐cancer cells.  相似文献   

19.
TiO2 nanotubes (TiO2-NTs) are currently attracting a high interest because the intrinsic properties of TiO2 provide the basis for many outstanding functional features. Herein, we focus on the cytotoxicity and sublocation of TiO2-NTs in neural stem cells (NSCs). The cytotoxicity of TiO2-NTs is investigated using the methyl tetrazolium cytotoxicity and reactive oxygen species assay, the apoptosis assay by flow cytometry. Cell viability assay shows that TiO2-NTs inside cells are nontoxic at the low concentration. A time-dependent relationship is observed, while a dose-dependent relationship is seen only at the concentration higher than 150 μg/ml. The uptake happens shortly after incubation with cells. TiO2-NTs can easily pass through the cell membrane and enter into the cells. The uptake amount is increased with prolonging incubation time and reach to maximum at 48 h. Transmission electron microscopy and confocal is used to study subcellular location of TiO2-NTs. It is found that TiO2-NTs traversed cell membrane and localized in many vesicles (endosomes and lysosomes) and cytoplasm. TiO2-NTs in NSCs firstly disperse or metabolism by lysosomal enzymes and then exocytosis from NSCs.
Figure
Transmission electron microscopy and confocal are used to study subcellular location of titanium dioxide nanotubes in neural stem cells  相似文献   

20.
Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes ( Re1 and Re2 ), along with their corresponding dinuclear complexes ( Re3 and Re4 ), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1–Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase‐independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase‐independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号