首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this article, a new methodology based on fuzzy proportional‐integral‐derivative (PID) controller is proposed to damp low frequency oscillation in multimachine power system where the parameters of proposed controller are optimized offline automatically by hybrid genetic algorithm (GA) and particle swarm optimization (PSO) techniques. This newly proposed method is more efficient because it cope with oscillations and different operating points. In this strategy, the controller is tuned online from the knowledge base and fuzzy interference. In the proposed method, for achieving the desired level of robust performance exact tuning of rule base and membership functions (MF) are very important. The motivation for using the GA and PSO as a hybrid method are to reduce fuzzy effort and take large parametric uncertainties in to account. This newly developed control strategy mixed the advantage of GA and PSO techniques to optimally tune the rule base and MF parameters of fuzzy controller that leads to a flexible controller with simple structure while is easy to implement. The proposed method is tested on three machine nine buses and 16 machine power systems with different operating conditions in present of disturbance and nonlinearity. The effectiveness of proposed controller is compared with robust PSS that tune using PSO and the fuzzy controller which is optimized rule base by GA through figure of demerit and integral of the time multiplied absolute value of the error performance indices. The results evaluation shows that the proposed method achieves good robust performance for a wide range of load change in the presents of disturbance and system nonlinearities and is superior to the other controllers. © 2014 Wiley Periodicals, Inc. Complexity 21: 78–93, 2015  相似文献   

2.
In this article, the assessment of new coordinated design of power system stabilizers (PSSs) and static var compensator (SVC) in a multimachine power system via statistical method is proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The bacterial swarming optimization (BSO), which synergistically couples the bacterial foraging with the particle swarm optimization (PSO), is used to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO‐based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one. © 2014 Wiley Periodicals, Inc. Complexity 21: 256–266, 2015  相似文献   

3.
Desulfurization systems in coal-fired power stations often suffer the problem of high operating costs caused by a rule-of-thumb control strategy, which implies great potential for optimization of the operation. Due to the complex desulfurization mechanism, frequently fluctuating unit load, and severe disturbance, it is challenging to determine the optimal operating parameters based on the traditional mechanistic models, and the operating parameters are closely related to the operational efficiency of the flue gas desulfurization system. In this paper, an operation strategy optimization method for the desulfurization process is proposed based on a data mining framework, which is able to determine online the optimal operating parameter settings from a large amount of historical data. First, Principal Component Analysis (PCA) is used to reduce data redundancy by mapping the data into a new vector space. Based on the new vector space, an enhanced fuzzy C-means clustering (Enhanced-FCM) is developed to cluster the historical data into groups sharing similar characteristics. Taking sulfur dioxide emission concentration as a constraint condition, the system is optimized with economic benefits and desulfurization efficiency as the objective function. When performing optimization, the group that current operating conditions belong to is determined first, then the operating parameters of the best performance are searched within the group and provided as the optimization results. The method is validated and tested based on the data from a wet flue gas desulfurization (WFGD) system of a 1000 MWe supercritical coal-fired power plant in China. The results indicate that the proposed operation strategy can appropriately obtain operating parameter settings at different conditions, and effectively reduce the desulfurization cost under the constraint of meeting emission requirements.  相似文献   

4.
This paper presents the use of Thyristor-Controlled Series Capacitor (TCSC) to control bifurcations of subsynchronous resonance (SSR) in multimachine power system. The modified second system of the IEEE second benchmark model of subsynchronous resonance is considered. The dynamics of the damper windings, automatic voltage regulator (AVR), and power system stabilizer (PSS) on SSR in power system are included. In the case of neglecting TCSC, the results show that the operating point of the system loses stability via subcritical Hopf bifurcation. When we add TCSC to the system, all bifurcations are eliminated. Therefore, the Thyristor-Controlled compensated system never loses stability at any realistic firing angle.  相似文献   

5.
This article presents a new strategy based on multistage fuzzy PID controller for damping power system stabilizer in multimachine environment using Honey Bee Mating Optimization (HBMO). The proposed technique is a new metaheuristic algorithm which is inspired by mating procedure of the honey bee. Actually, the mentioned algorithm is used recently in power systems which demonstrate the good reflex of this algorithm. Also, finding the parameters of PID controller in power system has direct effect for damping oscillation. Hence, to reduce the design effort and find a better fuzzy system control, the parameters of proposed controller is obtained by HBMO that leads to design controller with simple structure that is easy to implement. The effectiveness of the proposed technique is applied to single machine connected to infinite bus and IEEE 3–9 bus power system. The proposed technique is compared with other techniques through integral of the time multiplied absolute value of the error and figure of demerit. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–245, 2016  相似文献   

6.
This article proposed a new control strategy based on Takagi–Sugeno fuzzy model for deceasing the power system oscillation. This controller is based on the parallel distributed compensation structure, the stability of the whole closed‐loop model is provided using a general Lyapunov‐Krasovski functional. Also, in this article, a new objective function has been considered to test the proposed Fuzzy Power System Stabilizer in different load conditions which increase the system damping after the system undergoes a disturbance. So, for testing the effectiveness of the proposed controller, the damping factor, damping ratio, and a combination of the damping factor and damping ratio were analyzed and compared with the proposed objective function. The effectiveness of the proposed strategy has been used over 16 machine 68 bus power system. The eigenvalue analysis and nonlinear time domain simulation results proof the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 288–298, 2016  相似文献   

7.
This article proposes a new integrated diagnostic system for islanding detection by means of a neuro‐fuzzy approach. Islanding detection and prevention is a mandatory requirement for grid‐connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. Although passive schemes have a large non‐detection zone (NDZ), concern has been raised on active method due to its degrading power‐quality effect. Reliably detecting this condition is regarded by many as an ongoing challenge as existing methods are not entirely satisfactory. The main emphasis of the proposed scheme is to reduce the NDZ to as close as possible and to keep the output power quality unchanged. In addition, this technique can also overcome the problem of setting the detection thresholds inherent in the existing techniques. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro‐fuzzy inference system) for islanding detection. This approach utilizes rate of change of frequency (ROCOF) at the target DG location and used as the input sets for a neuro‐fuzzy inference system for intelligent islanding detection. This approach utilizes the ANFIS as a machine learning technology and fuzzy clustering for processing and analyzing the large data sets provided from network simulations using MATLAB software. To validate the feasibility of this approach, the method has been validated through several conditions and different loading, switching operation, and network conditions. The proposed algorithm is compared with the widely used ROCOF relays and found working effectively in the situations where ROCOF fails. Simulation studies showed that the ANFIS‐based algorithm detects islanding situation accurate than other islanding detection algorithms. © 2014 Wiley Periodicals, Inc. Complexity 21: 10–20, 2015  相似文献   

8.
In the current research chaotic search is used with the optimization technique for solving non-linear complicated power system problems because Chaos can overcome the local optima problem of optimization technique. Power system problem, more specifically voltage stability, is one of the practical examples of non-linear, complex, convex problems. Smart grid, restructured energy system and socio-economic development fetch various uncertain events in power systems and the level of uncertainty increases to a great extent day by day. In this context, analysis of voltage stability is essential. The efficient method to assess the voltage stability is maximum loadability limit (MLL). MLL problem is formulated as a maximization problem considering practical security constraints (SCs). Detection of weak buses is also important for the analysis of power system stability. Both MLL and weak buses are identified by PSO methods and FACTS devices can be applied to the detected weak buses for the improvement of stability. Three particle swarm optimization (PSO) techniques namely General PSO (GPSO), Adaptive PSO (APSO) and Chaotic PSO (CPSO) are presented for the comparative study with obtaining MLL and weak buses under different SCs. In APSO method, PSO-parameters are made adaptive with the problem and chaos is incorporated in CPSO method to obtain reliable convergence and better performances. All three methods are applied on standard IEEE 14 bus, 30 bus, 57 bus and 118 bus test systems to show their comparative computing effectiveness and optimization efficiencies.  相似文献   

9.
Smart grid is referred to a modernized power grid which can mitigate fault detection and allow self‐healing of the system without the intervention of operators. This article proposes an innovative analytical formulation using Markov method to evaluate electric power distribution system reliability in smart grids, which incorporates the impact of smart monitoring on the overall system reliability. An accurate reliability model of the main network components and the communication infrastructure have been also considered in the methodology. The proposed approach was applied to a well‐known test bed (Roy Billinton Test System) and various reliability case studies with monitoring provision and monitoring deficiency are analyzed. This article involves the developing possibilities of communication technologies and next‐generation control systems of the entire smart network based on the real‐time monitoring and modern control system to achieve a reliable, economical, safe, and high efficiency of electricity. The implementations indicate that using an appropriate set of the smart grid monitoring devices for power system components can virtually influence all the reliability indices although the amount of improvement varies between techniques. The proposed approach determined that smart monitoring for which components of the electric power distribution systems are tailored and deduce to major economical benefits. The described approach also reveals which reliability indices drastically influenced using monitoring. © 2014 Wiley Periodicals, Inc. Complexity 21: 99–113, 2015  相似文献   

10.
Statistical system identification and its use for the optimal control of thermal power plants are discussed. The analysis of the plant dynamics and derivation of the state-space representation are performed by fitting a multivariate AR model to the plant data obtained by an experiment. The basic concept of the power plant control and the motivation that necessitated the statistical approach are explained in the introduction. Practical procedure for the implementation of the method is described in detail with examples obtained from actual plants. The main items discussed are the selection of system variables by means of relative power contribution analysis, determination of the state equation and adjustment of the optimal feedback gain by digital simulation technique. Finally, excellent performance of the proposed control system is demonstrated by the operating records of 500 MW and 600 MW supercritical plants.  相似文献   

11.
This paper aims to study the stability for primary frequency regulation of hydro-turbine governing system with surge tank. Firstly, a novel nonlinear mathematical model of hydro-turbine governing system considering the nonlinear characteristic of penstock head loss is introduced. The nonlinear state equations under opening control mode and power control mode are derived. Then, the nonlinear dynamic performance of nonlinear hydro-turbine governing system is investigated based on the stable domain for primary frequency regulation. New feature of the nonlinear hydro-turbine governing system caused by the nonlinear characteristic of penstock head loss is described by comparing with a linear model, and the effect mechanism of nonlinear characteristic of penstock head loss is revealed. Finally, the concept of critical stable sectional area of surge tank for primary frequency regulation is proposed and the analytical solution is derived. The combined tuning and optimization method of governor parameters and sectional area of surge tank is proposed. The results indicate that for the primary frequency regulation under opening control mode and power control mode, the nonlinear hydro-turbine governing system is absolutely stable and conditionally stable, respectively. The stability of the nonlinear hydro-turbine governing system and linear hydro-turbine governing system is the same under opening control model and different under power control model. The nonlinear characteristic of penstock head loss mainly affects the initial stage of dynamic response process of power output, and then changes the stability of the nonlinear system. The critical stable sectional area of surge tank makes the system reach critical stable state. The governor parameters and critical stable sectional area of surge tank jointly determine the distributions of stability states.  相似文献   

12.
Nasser Yousefi 《Complexity》2016,21(6):299-308
This article presents the design and application of an efficient hybrid heuristic search method to solve the practical economic dispatch problem considering many nonlinear characteristics of power generators, and their operational constraints, such as transmission losses, valve‐point effects, multi‐fuel options, prohibited operating zones, ramp rate limits and spinning reserve. These practical operation constraints which can usually be found at the same time in realistic power system operations make the economic load dispatch (ELD) problem a nonsmooth optimization problem having complex and nonconvex features with heavy equality and inequality constraints. A particle swarm optimization with time varying acceleration coefficients is proposed to determine optimal ELD problem in this paper. The proposed methodology easily takes care of solving nonconvex ELD problems along with different constraints like transmission losses, dynamic operation constraints, and prohibited operating zones. The proposed approach has been implemented on the 3‐machines 6‐bus, IEEE 5‐machines 14‐bus, IEEE 6‐machines 30‐bus systems and 13 thermal units power system. The proposed technique is compared with solve the ELD problem with hybrid approach by using the valve‐point effect. The comparison results prove the capability of the proposed method give significant improvements in the generation cost for the ELD problem. © 2015 Wiley Periodicals, Inc. Complexity 21: 299–308, 2016  相似文献   

13.
针对智能电网系统的安全与经济运行问题,建立了一个同时考虑经济、环境和安全指标的电网系统多目标优化模型,并运用理想点法对电网系统的多目标优化运营问题进行了相应的决策性分析,然后使用了一种新型的智能计算方法——标杆管理优化算法对该模型进行了求解计算.仿真实例表明,本文提出的决策分析和求解计算方法是切实可行的,具有一定的实用性和灵活性.此外,在计算过程中对一些相关的技术性问题,如对协调模型中的两类不同的控制变量、基因链的构造、约束条件的处理以及目标函数的选取等问题做了一些研究和探讨.  相似文献   

14.
Heat transfer of a power‐law non‐Newtonian incompressible fluid in channels with porous walls has not been carefully studied using a proper numerical method despite a few constructions of approximate analytic solutions through the similarity transformation and perturbation method for Newtonian fluids (i.e. power‐law index being one). In this paper, we propose a finite element method for the thermal incompressible flow equations. The incompressible condition is treated by a penalty formulation. Numerical solutions are validated by comparing them with an approximate analytic solution of the Navier–Stokes equation in the Newtonian fluid case. Then, the method is used to simulate the heat transfer of various power‐law fluids. Additionally, unlike previous studies, we allow the thermal diffusivity to be a function of temperature gradient. The effect of different values of the parameters on the temperature and velocity is also discussed in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
First hitting criteria of a system are to initially achieve some performance indeces of the target state set. This paper primarily investigates the optimal control problem of the uncertain second‐order circuit based on first hitting criteria. First, considering time efficiency and different from the ordinary expected utility criterion over an infinite time horizon, two first hitting criteria which are reliability index and reliable time criteria are innovatively proposed. Second, assuming the circuit output voltage as an uncertain variable when the historical data is lacking, we better model the real circuit system with the uncertain second‐order differential equation which is essentially the uncertain fractional‐order differential equation. Then, based on the first hitting time theorem of the uncertain fractional‐order differential equation, the distribution function of the first hitting time under the second‐order circuit system is proposed and the uncertain second‐order circuit optimal control model (reliability index and reliable time‐based model) is transformed into corresponding crisp optimal problem. Lastly, analytic expressions of the optimal control for the reliability index model are obtained. Meanwhile, sufficient condition and guidance for parameters for the optimal solution of the reliable time‐based model are derived, and corresponding numerical examples are also given to demonstrate the fluctuation of our optimal solution for different parameters.  相似文献   

16.
Maximum Power Point Tracking (MPPT) is used in Photovoltaic (PV) systems to maximize its output power. A new MPPT system has been suggested for PV‐DC motor pump system by designing two PI controllers. The first one is used to reach MPPT by monitoring the voltage and current of the PV array and adjusting the duty cycle of the DC/DC converter. The second PI controller is designed for speed control of DC series motor by setting the voltage fed to the DC series motor through another DC/DC converter. The suggested design problem of MPPT and speed controller is formulated as an optimization task which is solved by Artificial Bee Colony (ABC) to search for optimal parameters of PI controllers. Simulation results have shown the validity of the developed technique in delivering MPPT to DC series motor pump system under atmospheric conditions and tracking the reference speed of motor. Moreover, the performance of the ABC algorithm is compared with Genetic Algorithm for various disturbances to prove its robustness. © 2015 Wiley Periodicals, Inc. Complexity 21: 99–111, 2016  相似文献   

17.
A novel internal model control method is proposed for the robust output synchronization of FizHugh–Nagumo (FHN) neurons under external electrical stimulation. The output synchronization problem can be converted into a robust stabilization problem of an augmented system consisting of the original given plant and an internal model. Hence, the design procedures include the design of a satisfied internal model and a proper state-feedback stabilizer for this augmented system. The stability analysis of the resulting closed-loop system leads to semiglobal Lyapunov asymptotic stability of the robust output synchronization achieved for some appointed initial condition in the state space and for all possible values of the uncertain parameter vector. Finally, the simulation results demonstrate the validity of the proposed method.  相似文献   

18.
分析一类含小参数的时变非线性系统关于给定状态约束集合的技术稳定性.根据向量微分比较原理和基本的单调性准则,利用向量V函数方法给出由系统系数表达的技术稳定性判据.并讨论了基于派生系统和线性化方法研究非线性系统技术稳定性的条件.另外,对于派生时变线性系统的指数稳定性给出了简单的代数判据.最后给出示例说明文中方法.  相似文献   

19.
连幂式插值     
根据连续幂指形式的函数,提出了连续幂指形式的函数插值的概念,简称连幂式插值,用构造式方法得到了满足插值条件的连幂式插值函数。最后,通过一个算例与连分式插值函数做了对比。  相似文献   

20.
电磁式振动能量捕获技术从单稳态系统发展到多稳态系统,拓宽了响应频带,增大了输出电压,能够获得较好的发电性能.以附加线性振子的双稳态电磁式振动能量捕获器为研究对象,主要研究了势阱深度对双稳态系统发电性能的影响,并基于最优发电性能下的势阱深度,研究了双稳态系统结构参数中质量比与调频比对系统发电性能的影响.通过数值仿真结果说明,在外部激励频率为低频时:势阱深度较大时,双稳态系统的振子只能在一个阱内发生小幅振动运动;当势阱深度小到一定程度时,双稳态系统的振子跨过势垒在两个阱间内发生大幅混沌运动或周期运动,其优于小幅振动运动时的平均输出功率.通过数值模拟,得到双稳态系统具有较高的发电性能下的最优质量比、调频比以及阻尼比参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号