首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
以含二氮杂萘酮结构的聚芳醚砜酮(PPESK)为制膜材料纺制了中空纤维气体分离膜,通过浊点滴定和线性浊点关联式(LCP关系式)计算,对PPESK三元纺丝液体系的相分离行为进行了研究,得到了PPESK三元纺丝液体系相图的相平衡曲线;并由PPESK/N,N-二甲基乙酰胺(DMAc)/γ-丁内酯(GBL)和PPESK/DMAc/丙酸(PA)体系相分离数据计算了PPESK的θ溶剂中GBL和PA与DMAc的比例.结果表明,在PPESK/DMAc/PA和PPESK/DMAc/H2O体系中,浊点滴定实验得到的相平衡曲线与依据LCP关系式计算得到的相平衡曲线吻合;体系热力学性质稳定的纺丝液体系易于制备出结构致密、选择性高的中空纤维气体分离膜;非溶剂添加剂(NSA)/DMAc混合溶剂的θ组成对膜性能有至关重要的影响,NSA/DMAc高于θ组成时,膜性能发生突变,NSA/DMAc低于θ组成时,制得的膜性能良好;力学性能测试表明PPESK中空纤维膜具有良好的机械强度.  相似文献   

2.
采用熔融共混法制备了不同重量比例的新型含二氮杂萘酮结构聚芳醚砜酮(PPESK)与聚醚砜(PES)共混物.利用热失重(TGA)及动态热机械仪(DMTA)对该共混物的热性能及动态机械性能进行了研究.研究结果表明,在氮气氛围中,PPESK热分解分为两步反应进行,反应级数n=1,说明PPESK在氮气氛围中的热分解反应类型与β(升温速率)无关而与材料物性有关;采用Ozawa方法得出在15%热失重前,热分解活化能的平均值为240 kJ/mol;随着升温速率的提高,PPESK热降解速率有减缓趋势.在280℃以前,PPESK储能模量值随温度变化较小,保持在较高值,温度在280~330℃之间,储能模量值降低幅度突变.另外,PPESK中加入PES会降低其储能模量值及其热稳定性.  相似文献   

3.
为考察不同溶剂对聚醚砜酮(PPESK)炭膜结构和性能的影响,以PPESK为前驱体,分别以NMP,CHCl3,C2H2Cl4,DMAc为溶剂制备气体分离炭膜。并采用红外光谱、热重分析、X射线衍射和气体渗透等测试手段对所制膜的化学结构、炭膜的微结构和气体的分离性能进行了表征。结果表明,溶剂的溶度参数、沸点、挥发性以及原膜中溶剂的含量等导致所制备聚合物膜形成不同的化学结构,改变它在预氧化和炭化过程的结构变化规律,使形成炭膜表现出不同的炭结构、孔隙结构和表观柔韧性,最终影响炭膜的气体渗透性和分离选择性。  相似文献   

4.
以含二氮杂萘联苯结构的聚芳醚砜酮PPESK(Tg为263~305℃)为膜材料,以干-湿纺丝技术制备基膜,外涂法涂覆聚电解质(聚乙烯基吡咯烷酮PVP)并络合Ag 离子,制备了超薄皮层中空纤维复合膜,皮层厚度约为1μm。研究了复合膜聚电解质涂层PVP质量分数、Ag 含量、气体压力差、测试温度和不同过渡金属离子等对复合膜丙烯/丙烷分离性能的影响。结果表明,在压力为200kPa、温度为23℃下,当PVP质量分数为10%、n(Ag )∶n(CO)=1∶1的条件下,复合膜对丙烯渗透率可达16.32GPU,分离系数为4.79。  相似文献   

5.
分子结构对聚芳醚酮薄膜透气性的影响   总被引:1,自引:0,他引:1  
分子结构对聚芳醚酮薄膜透气性的影响王忠刚,陈天禄,徐纪平(中国科学院长春应用化学研究所长春130022)关键词聚芳醚酮,气体分离膜,结构-性能关系为了改善聚合物薄膜的透气性能,开发具有高透气性和高选择性的膜材料,人们对膜分子结构与透气性能间的关系进行...  相似文献   

6.
姚桂燕  观文娜  许峰  王华  关亚风 《色谱》2008,26(5):590-594
应用自制的聚醚砜酮(PPESK,30 μm)涂层纤维,采用顶空固相微萃取-气相色谱法测定水中痕量的酚类化合物。优化了固相微萃取温度、萃取时间、pH值和离子强度。方法的检出限为0.003~0.041 μg/L,相对标准偏差低于16%(n=5)。将PPESK涂层纤维与商品化的聚丙烯酸酯涂层纤维对比,结果表明PPESK萃取酚类化合物有较高的萃取富集倍数。用所制备的PPESK萃取头分析自来水、海水等实际水样,20 μg/L添加水平下的回收率分别为100.5%~111.8%和94.8%~117.3%。  相似文献   

7.
利用Langmuir单层膜模拟生物矿化过程或者是利用LB膜技术构筑层状固体模板来制备与组装纳米材料已成为新的研究热点~([1,2]),因为通过变换成膜材料及制备条件,可以调控生成材料的性质.Langmuir单分子膜的成膜性能直接决定着LB膜的沉积质量、结构和性能~([3,4]).  相似文献   

8.
以带酞基聚芳醚酮(PEKM)为膜材料,用相转换法制备了PEK—C不对称超滤膜,研究了铸膜液的主要组分对膜的孔结构与超滤性能的影响。  相似文献   

9.
为进一步改善芳香型磺化聚合物质子交换膜材料的离子传导率、尺寸稳定性和耐化学氧化稳定性,从聚合物结构设计出发,首先利用9,9-双(3-苯基-4-羟基)苯基芴与4,4′-(六氟异亚丙基)二苯酚、1,4-二(4-氟苯甲酰基)苯经芳香亲核缩聚合成了一系列含芴和苯侧基结构新型聚芳醚酮聚合物(4-PAEK-xx),进一步通过温和的后磺化反应,制备了一系列含多磺酸结构侧链型聚芳醚酮质子交换膜(4-SPAEK-xx).对所制备的侧链型聚芳醚酮质子交换膜的结构和性能分别进行了表征分析.结果表明,该类质子交换膜具有适中的吸水率和较低的溶胀率,80°C时的吸水率和溶胀率分别在21%~51.2%和7.4%~17.2%.该类聚芳醚酮质子交换膜展现出了良好的离子传导性,80°C时的离子传导率在115~171 mS/cm,其中4-PAEK-45膜(离子交换容量为2.12 mequiv/g)的离子传导率已经超过了商品化的Nafion膜.此外,所制备的侧链型聚芳醚酮质子交换膜还表现出了良好的热稳定性、力学性能和耐化学氧化性.磺化膜优良的综合性能主要归因于侧链多磺酸结构和长尺寸含氟疏水结构单元的同时引入,其中侧链多磺酸结构的引入降低了主链磺化结构单元的比例,同时使亲水性的磺酸基团与分子主链分隔开来;而长尺寸含氟疏水性结构单元的引入进一步提高了膜材料的尺寸稳定性和耐氧化稳定性.  相似文献   

10.
报道了一种新型磺化聚芳醚酮材料的合成方法, 通过引入取代基对聚芳醚主链进行保护,用氯磺酸直接磺化方法在聚芳醚酮高分子侧基上引入磺酸功能基, 实现了聚合物磺化结构的可控定位合成, 得到了稳定性较好的磺化聚芳醚酮. 通过核磁共振(NMR)、 热重(TG)和凝胶渗透色谱(GPC)等分析方法对其结构及性能进行了表征. 用溶液浇膜法制备了质子交换膜, 考察了膜的各种性能, 并与商用Nafion膜进行了比较, 其导电性、 热稳定性和吸水性远优于Nafion膜, 抗氧化性、抗水解性和机械强度也达到了较高的指标.  相似文献   

11.
Amphiphilic graft copolymers comprising poly(phthalazinone ether sulfone ketone) (PPESK) backbones and poly(ethylene glycol) (PEG) side chains were synthesized and blended into PPESK casting solutions to prepare hydrophilic and anti-fouling microporous membranes. The graft copolymer was prepared by a modified Williamson etherification method. Sodium alkoxide of methoxyl PEG (PEG-ONa) was used to react with chloromethylated PPESK (CMPPESK). FT-IR spectroscopy, 1H NMR and solid-state 13C CP-MAS NMR analysis confirmed the covalent linking of PEG with PPESK backbones. The incorporation ratio of PEG calculated from 1H NMR was in agreement with that from TGA tests. The graft products were added into PPESK casting solutions to prepare composite porous membranes using phase inversion method. X-ray photoelectron spectroscopy (XPS) and water contact angle examinations indicated that the grafting copolymers were preferentially excluded to the membrane-coagulant interface during membrane forming, contributing the membranes with improved hydrophilicity and surface wettability. Compared with the neat membrane, the blend membranes exhibited a larger surface pore size and less susceptible to protein fouling.  相似文献   

12.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

13.
Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethvlated PPESK(CMPPESK) was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate)(P(PEGMA)) brushes were grafted from CMPPESK membra...  相似文献   

14.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent.CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP),N,N-dimethylacetamide (DMAc) and chloroform.Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization.QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF).The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.  相似文献   

15.
Preparation of an amphiphilic graft copolymer having poly(phthalazinone ether sulfone ketone)(PPESK) as main chains was carried out by atom transfer radical polymerization(ATRP).The precursor,chloromethylated PPESK (CMPPESK),was prepared by using chioromethylether as chloromethylation agent.Then,poly(ethylene glycol) methyl ether methacrylate(PEGMA) was used as monomer to synthesize PPESK-g-P(PEGMA) by ATRP method under the catalysis of a cuprous chloride/2,2'-bipyridyl system.PPESK/PPESK-g-P(PEGMA) blen...  相似文献   

16.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

18.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征   总被引:8,自引:0,他引:8  
用含二氮杂萘酮结构类双酚DHPZ,3,3′-二磺酸钠基-4,4′-二氟二苯酮,2,6-二氯苯腈以及4,4′-二氟二苯酮,通过缩合共聚合反应合成了一系列不同磺化度、高分子量的磺化聚芳醚腈酮.聚合物特性粘数为0·58~2·0dL/g.用红外光谱(FT-IR),核磁共振谱(1H-NMR)表征了聚合物结构.用差示扫描量热仪(DSC)和热重分析仪(TGA)研究了聚合物的耐热性能,研究表明其玻璃化温度(Tg)可达352℃,5%热失重温度大于500℃.以N-甲基吡咯烷酮为溶剂,溶液浇铸法制备了聚合物膜,并测定了膜的溶胀率以及质子交换能力.结果表明,与Nafion膜相比,磺化聚芳醚腈酮膜在相同的质子交换能力条件下,溶胀率显著降低.  相似文献   

20.
Molecular brushes (densely grafted polymers or bottle-brush macromolecules) were synthesized by the "grafting onto" method via combination of atom transfer radical polymerization (ATRP) and "click" reactions. Linear poly(2-hydroxyethyl methacrylate) (PHEMA) polymers were synthesized first by ATRP. After esterification reactions between pentynoic acid and the hydroxyl side groups, polymeric backbones with alkynyl side groups on essentially every monomer unit (PHEMA-alkyne) were obtained. Five kinds of azido-terminated polymeric side chains (SCs) with different chemical compositions and molecular weights were used, including poly(ethylene glycol)-N3 (PEO-N3), polystyrene-N3, poly(n-butyl acrylate)-N3, and poly(n-butyl acrylate)-b-polystyrene-N3. All click coupling reactions between alkyne-containing polymeric backbones (PHEMA-alkyne) and azido-terminated polymeric SCs were completed within 3 h. The grafting density of the obtained molecular brushes was affected by several factors, including the molecular weights and the chemical structures of the linear SCs, as well as the initial molar ratio of linear chains to alkynyl groups. When linear polymers with "thinner" structure and lower molecular weight, e.g., PEO-N3 with Mn = 775 g/mol, were reacted with PHEMA-alkyne (degree of polymerization = 210) at a high molar ratio of linear chains to alkynyl groups in the backbone, the brush copolymers with the highest grafting density were obtained (Y(grafting) = 88%). This result indicates that the average number of SCs was ca. 186 per brush molecule and the average molecular weight of the brush molecules was ca. 190 kg/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号