首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of −3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m−1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10−2 m−1 for curvature and ±5 × 10−2 °C for temperature.  相似文献   

2.
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LPo3 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.  相似文献   

3.
In accordance with the intrinsic structure of controllably-spun birefringent-fibre-based fibre polarization transformer (FPT), the Jones vector is calculated from point to point along the polarization transforming fibre by the cascade differential phase retarder model. It is the first time using this concise method to examine the phasedifference effect on the evolution of state of polarization (SOP) inside this special fibre component. Both the extinction ratio and orientation angle of SOP are calculated to give out a whole evolution history from linear polarization light at the slow spun end into circular polarization light at the fast spun end, and vice versa. The influence of phase-difference is discussed on the polarization transforming performance and further referential conclusion is provided for design and test of the FPT component.  相似文献   

4.
Characteristics of the side-polished thermally expanded core (TEC) fiber have been investigated theoretically and experimentally. The effect of core expanding on the transmission of the side-polished TEC fiber is predicted theoretically and demonstrated experimentally. The side-polished TEC fiber covered with an external medium whose chromatic dispersion is much different from the fiber materials, is applied to a band-edge filter with a high cut-off. The relationship between the expanded core diameter and the performance of the band-edge filter was measured and discussed.  相似文献   

5.
The influence of defect-core on the birefringence and confinement losses of rectangular-lattice photonic crystal fibers are investigated numerically by applying the multipole method. Numerical results illustrate that the birefringence in such fibers is determined not only by the arrangement of air holes in the cladding but also the shape of the core. It is found that asymmetry of the core represented by its rectangular shape implies a higher effective index of the mode that is parallel with the longer side of the rectangle, whereas the anisotropic rectangular-lattice cladding gives rise to just the opposite effect and thus the resulting birefringence can be controlled by a proper combinations of both mechanisms. In particular, effect of the asymmetry of the core on the birefringence is dominant for shorter wavelength. Increased birefringence and reduced confinement loss can be achieved, if we form the core by the omission of several air holes in a row to reduce its negative effect on the birefringence. On the other hand, when asymmetry is increased in the other direction, a negative birefringence at shorter wavelength can be achieved. This occurs due to the fact that asymmetry of the core at higher frequencies overcomes the effect of the asymmetric cladding. As a result, its possible to achieve zero birefringence in anisotropic cladding photonic crystal fiber with an asymmetric core.  相似文献   

6.
All-solid silica-based photonic crystal fibers   总被引:1,自引:0,他引:1  
An index-guiding all-solid photonic crystal fiber (PCF) composed entirely of silica material is proposed in this paper. The core of this optical fiber is composed of pure silica, and the cladding consists of doped silica rod in the background of pure silica. The dependence of confinement loss on the diameter of the doped rods, the number of doped-rod rings, and the doping level is investigated numerically. In addition, the proposed fiber possesses a shorter cutoff wavelength as compared with the air/silica PCF, which is directly confirmed by the V parameter, and explained based on a scalar approximation method. Furthermore, the bending loss for the fiber is predicted. A low-loss single-mode all-solid silica-based PCF with a large-mode-area is possible by the appropriate selection of configuration parameters.  相似文献   

7.
By using the complex finite element method (FEM) under perfectly matched layer (PML) boundary conditions, dispersion properties of microstructured optical fibres (MOFs) with elliptical air holes are analysed by changing the pitch and sizes of air holes belonging to the inner three rings. Meanwhile, the confinement loss of the fundamental mode is engineered to achieve the single-polarization single-mode transmission. Based on this analysis, a novel design of MOFs for properties of the single-polarization single-mode and the nearly zero ultraflattened dispersion between lpskm^-1 nm^-1 in the wavelength range of 1.2-1.6μm is presented for the first time.  相似文献   

8.
An octagonal photonic crystal fiber (O-PCF) structure with eight air-holes on the first ring is proposed based on a unit isosceles triangle. The propagation characteristics and cut-off behaviors of the O-PCF and the standard hexagonal PCF (H-PCF) are numerically investigated by combining the vector boundary method and the effective area method. The phase boundaries for cut-off, single-mode, and multi-mode operations between the O-PCF and H-PCF are calculated and compared. It is found that under the same pitch Λ and air filling fraction (AFF) of the air-holes the O-PCF has significantly wider wavelength range operating in single-mode region, more circular-like field distribution, and less confinement loss than the H-PCF.  相似文献   

9.
A novel long-period fibre grating (LPFG) with low polarization-dependent loss (PDL) is fabricated by using a multi-edge exposure method with high frequency CO2 laser pulses. The experimental results show that the PDL of a triple-edge-written LPFG with a peak amplitude of-16.5 dB can be as low as 0.22 dB. These hovel LPFGs can find important applications in optical communication and sensing.  相似文献   

10.
Microstructured optical fibres (MOFs) have attracted much interest in recent times, due to their unique waveguiding properties that are vastly different from those of conventional step-index fibres. Tapering of these MOFs promises to significantly extend and enhance their capabilities. In this paper, we review the fabrication and characterisation techniques of these fibre tapers, and explore their fundamental waveguiding properties and potential applications. We fabricate photonic crystal fibre tapers without collapsing the air-holes, and confirm this with a non-invasive probing technique that enables the characterisation of the internal microstructure along the taper. We then describe the fundamental property of such tapers associated with the leakage of the core mode that leads to long-wavelength loss, influencing the operational bandwidth of these tapers. We also revisit the waveguiding properties in another form of tapered MOF photonic wires, which transition through waveguiding regimes associated with how strongly the mode is isolated from the external environment. We explore these regimes as a potential basis for evanescent field sensing applications, in which we can take advantage of air-hole collapse as an extra dimension to these photonic wires.  相似文献   

11.
We propose a new type of high flexible single-polarization single-mode (SPSM) photonic crystal fibre (PCF). Numerical analysis indicates that the SPSM PCF proposed guides only one polarization mode over a wavelength band broader than the conventional SPSM fibres. The position and the bandwidth of the single polarization mode region depend flexibly on the structure parameters such as the hole diameters d1 and d2 and the hole pitch Λ of the SPSM PCFs. A 200-nm SPSM region can be obtained for the SPSM PCF with Λ=2.55μm, d1/Λ=0.3 and d2/Λ=0.833 and the modal birefringence at the wavelength 1.31μm can reach 1.8×10-3.  相似文献   

12.
By using a plane wave expansion method, some important cobweb cladding structure are analysed. Taking a dielectric parameters of designing the hollow-core fibre with material PMMA, for example, the tolerance of the parameters is discussed. The results show that the parameters of the structure possess oneself of a regularity and limit, and have a larger tolerance for the structural parameters in fabrication.  相似文献   

13.
A kind of high birefringence SF6 soft glass photonic crystal fiber (HBSF6-PCF) is proposed. The properties of birefringence, dispersion, nonlinear coefficient and the transmission characteristics are studied by the multipole method and the adaptive split-step Fourier method. The numerical results show that the birefringence and the nonlinear coefficient reach the orders of 10^-2 and 10^-1, respectively. In addition, the HBSF6-PCFs can generate very smooth supercontinuum spectra when illuminated with femtosecond pulsed light of 1064 nm. It is found that up to 800nm spectral width (evaluated at -5dB from the peak) is achieved. Therefore, the advantage of the HBSF6-PCFs is such that a high birefringence, a high nonlinearity and a smooth supercontinuum are perfectly combined in them.  相似文献   

14.
A double-cladding microstructured fiber (MF) is proposed in this paper. The inner cladding of this optical fiber is composed of elliptical air holes and silica. The dependence of dispersion on the diameter of the air holes, the pitch, and the axes of the elliptical holes is investigated numerically. The proposed fiber possesses an ultra flattened dispersion curve over a wide wavelength range, and its dispersion value is small. The effective mode area is approaching to 60 μm2, and the confinement loss is as low as <0.025 dB/km at 1550 nm. While choosing suitable structure parameters, an ultra dispersion-flattened MF within a broadband from1000 nm to 1900 nm can be achieved. The dispersion fluctuation is 0.6-1.0 ps/(nm·km) in all S, C and L band.  相似文献   

15.
We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.  相似文献   

16.
Using the tunable pump pulses with about lOO fs pulse duration and 1064 nm central wavelength; the polarization-, wavelength- and power-dependent anti-Stokes lines are generated and modulated simultaneously in a polarization-maintaining photonie crystal fiber (PM-PCF) with two zero-dispersion wavelengths. By accurately controlling the polarization directions, the wavelength and the power of the pump pulse in the fiber anomalous region close to the second zero-dispersion wavelength of the PM-PCF, the output anti-Stokes pulse spectra can be tuned between 563 nm and 603 nm, which is in good agreement with the theoretical simulation. The color conversion of the mode image from yellow to orange is also observed with the different polarization pump pulses. These results can be attributed to the combined interaction between the fiber birefringence (including linear- and nonlinear- birefringence) and dispersion, and are attributed to phase-matching parametric four-wave mixing.  相似文献   

17.
We investigated a particular design of a highly birefringent PCF with attractive features for pressure sensing applications. A plane-wave method together with the finite element method were used to numerically calculate phase and group modal birefringence, pressure and temperature sensitivities of our fiber. The simulation results together with the experiments demonstrate a considerable difference between a very high phase birefringence (B ∼ 10−3) and a very low negative group birefringence (G −10−3). Our fiber exhibits a low and positive temperature sensitivity (KT < 0.1 rad/(K⋅m)), and relatively high and negative mechanical (pressure) sensitivity (Kp ≤ −10 rad/(MPa⋅m)), which supports its possible use as a mechanical sensor that does not require any temperature compensation.  相似文献   

18.
A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5Gb/s.  相似文献   

19.
A radio over fiber system using the fluorinated based polymer multimode fibers (PMMF) is presented in this paper for the enhancement of the indoor coverage of the multiband orthogonal frequency division multiplexing ultra-wideband standard (MB-OFDM UWB) inside a building. A preliminary part related the cost analysis owing to glass and polymer multimode fiber deployment inside a fiber network is reported. The study of the physical properties of the polymer optical fibers (core diameter, numerical aperture, differential mode delays, modal bandwidth…) is firstly performed in order to effectively exhibit the potentialities and the robustness of such fibers to be used in a low cost radio over fiber system. The DMD measurements of four fluorinated based polymer optical fiber are reported. The designed system operates at 850 nm with commercial off the shelf (COTS) devices combined to the intensity modulation/direct detection technique. The opportunity of using polymer fibers and COTS components to improve the indoor coverage of the MB-OFDM UWB standard is so reported by the measurement of the Error Vector Magnitude or the Relative Constellation Error variation as a function of the system parameters (RF power, optical attenuation, fiber length…) as well as the compliance of the eye diagram with the mask testing. By the way, the transmission performance of both 200 and 480 Mbps signals is demonstrated over up to 200 m link length of polymer multimode fibers: transmission penalties are quantified by relative constellation error with values under the standard requirements. A comparative study with classical OM2 50 μm based glass multimode fiber having the same bandwidth/length product than the PMMF is done.  相似文献   

20.
The bandwidth behavior of graded-index multimode fibers (GI-MMFs) for different launching conditions is investigated to understand and characterize the effect of differential mode delay. In order to reduce the launch-power distribution the near field of a single-mode fiber is used to produce a controlled restricted launch. The baseband response is measured by observing the broadening of a narrow input pulse (time-domain measurement). The paper verifies the degradation in bandwidth due to profile distortion by scanning the spot of the single-mode fiber with a transversal offset from the center of the test sample. In addition, the impact of the launch-power distribution tuned by different spot-size diameters is demonstrated. Measurements were taken on ‘older’ 50-μm and 62.5-μm GI-MMFs as well as on laser-performance-optimized fibers more recently developed. Received: 12 November 2001 / Final version: 26 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +49-781/205-242, E-mail: opto@fh-offenburg.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号