首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 22 毫秒
1.
采用两步溶胶-凝胶法,分别在850℃,950℃和1050℃下成功制备了BaFe12O19/Ni0.Zn0.4Fe2O4复合材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)对样品的化学成分、结构、形貌、磁性能进行了表征.结果表明,钡铁氧体大部分呈片状,Ni0.6Zn0.4Fe2O4呈颗粒状分散在钡铁氧体周围.与850℃制备的钡铁氧体和镍锌铁氧体纯相纳米粉体相比,850 ℃制备的BaFe12O19/Ni06Zn04Fe2O4复合粉体的矫顽力和剩余磁化强度介于BaFe12O19和Ni0.6Zn0.4Fe2O4之间;饱和磁化强度(Ms=55.61 emu/g)比钡铁氧体(Ms=53.33emu/g)和镍锌铁氧体(Ms=54.13 emu/g)的都有提高.不同煅烧温度制备的BaFe12O19/ Ni0.6Zn0.4Fe2O4复合粉体,当烧结温度为950℃时饱和磁化强度最大(M =64.84 emu/g);是一种性能优良的磁性材料.  相似文献   

2.
废旧碱性电池共沉淀法制备锰锌铁氧体的研究   总被引:9,自引:0,他引:9  
以硫酸溶解废旧碱性锌锰电池所得溶液为原料,用NH4HCO3与NH3·H2O组成沉淀剂,采用并加共沉淀法制备出锰锌铁氧体.借助于原子吸收分光光度计对沉淀条件进行优化;借助于XRD、IR等手段对产物组成晶型进行检测;借助于SEM及TEM等手段对产物形貌进行表征;借助于振动样品磁强计对产物磁性能进行检测,并对产物组成进行优化.结果表明:共沉淀的适宜条件为T=50~55℃、pH=6.5~7.5;煅烧温度为1130~1160℃、煅烧时间为2h;产物最佳组成为Mn0.6Zn0.4Fe2O4;其形状近似为球形、具有粒径小、分散均匀、磁性能优良等特点.  相似文献   

3.
采用化学共沉淀法制备出Mn1-xZnx Fe2O4(x=0.1,0.2,0.3)磁性颗粒,通过X射线衍射(XRD)测试分析了Mn1-xZnxFe2O4(x =0.1,0.2,0.3)颗粒的结构参数及平均粒径,结果表明制备的样品为锰锌铁氧体纳米粒子.用振动样品磁强计(VSM)测量了样品的饱和磁化强度,对应x=0.1,0.2,0.3分别为25.3、44.4、30.7 emu/g.选用Mn0.8Zn0.2FeO4纳米粒子,通过油酸作分散剂,分散到航空煤油中制备出磁性液体样品,研究分析了磁性液体的磁化特性和热磁特性.  相似文献   

4.
采用金属硝酸盐和助燃剂尿素通过低温燃烧反应成功制备了Ni0.25 Mn0.25 Zn0.50Fe2O4铁氧体,通过热重和XRD分析了在不同的热处理温度下,制备样品的反应过程.铁氧体的微观形貌通过TEM进行表征,在室温条件下通过矢量网络分析仪测试了从2 GHz到8 GHz的微波吸收性能.结果表明,通过燃烧反应的粉体加热到400℃保温6h制备出高纯度的Ni0.25Mn0.25Zn0.50Fe2O4铁氧体,颗粒为不规则的片状,晶粒尺寸约为20 nm.在厚度为4 mm时,微波频段从5 GHz到8 GHz反射率小于-10 dB,在频率为7.96 GHz时,达到最小反射率-30.75 dB.  相似文献   

5.
采用水/Triton X-100/ 环己烷/正己醇微乳体系制备了尖晶石型NiFe2O4、Ni0.5Zn0.5Fe2O4、MnFe2O4、Mn0.5Zn0.5Fe2O4纳米粉体,利用X射线衍射(XRD)、透射电子显微镜(TEM)、Zeta电位仪、振动样品磁强计(VSM)等对纳米粉体的结构和磁性能进行表征.研究结果表明:微乳液法制备的纳米软磁铁氧体晶粒结构完整、粒径细小且分布均匀(粒径范围在30~80 nm),合适的煅烧温度为500 ℃;在室温下埘制备的几种软磁铁氧体进行磁性能测定发现,与其他制备方法相比,采用微乳液法制备的纳米软磁铁氧体的比饱和磁化强度较高,比剩余磁化强度、矫顽力较低,软磁性性能较佳.  相似文献   

6.
采用低温固相法制备Y0.85Ce0.15Mn0.8Fe0.2O3粉体,经高温烧结制得陶瓷,研究了Ce、Fe共置换对锰酸钇陶瓷的微结构和磁学性能的影响.采用XRD对Y0.85Ce0.15Mn0.8Fe0.2O3粉体和陶瓷进行物相分析,利用TEM和FESEM对样品进行显微形貌分析;同时研究了Y0.85Ce0.15Mn0.8Fe0.2O3陶瓷的磁学性能,并利用XPS分析了其中磁性离子的价态分布.结果表明,前驱体经800℃煅烧后可制得单相Y0.85Ce0.15Mn0.8Fe02O3纳米粉体;该粉体经1450℃烧结制得致密的Y0.85Ce0.15Mn0.8Fe0.2O3陶瓷,其反铁磁转变温度为29K,在低温下存在反铁磁有序;与YMn0.8Fe0.2O3相比,Y0.85Ce0.15Mn08Fe0.2O3中Fe2+含量降低,Mn离子的混价结构由Mn2 +/Mn3+转变为Mn3 +/Mn4+,陶瓷的磁性转变温度降低.  相似文献   

7.
本文概述用溶胶-凝胶法制备锰锌铁氧体系列粉末的工艺;通过凝胶的差热分析实验,掌握制备锰锌铁氧体系列粉末适当的煅烧温度区间;列出MnxZn1-xFe2O4(x=0.25、0.5、0.75)样品的XRD衍射图;用不同的煅烧温度和不同的煅烧时间来处理x=0.25的样品,得到的数据通过多项式拟合,求出晶粒度与煅烧温度(D-T)曲线方程和晶粒度与煅烧时间(D-t)的曲线方程;分别讨论晶粒度随二者变化的原因.  相似文献   

8.
水热-溶胶浸渍法制备可磁分离复合光催化剂分两步进行:首先,水热法将锰锌铁氧体负载于活性炭(AC)上制得软磁性活性炭(FAC),然后钛溶胶浸渍FAC,煅烧后形成软磁性复合光催化剂Ti-FAC.以亚甲基蓝为目标降解物考察了制备参数对其光催化降解率的影响,并使用XRD、SEM和VSM对其晶体结构、形貌和磁性能进行了表征.结果表明:锰锌铁氧体负载最为AC质量的1/8,钛溶胶浸渍两次,在500℃煅烧后所得复合光催化剂光催化活性最高.此复合催化剂上锰锌铁氧体为尖晶石结构,并有轻微烧结;TiO2纳米颗粒为锐钛矿相,均匀分散于AC上或者锰锌铁氧体上.该复合光催化剂具有很好的软磁性和稳定性,在循环使用过程中可采用外加磁场进行固液分离,并经6次循环使用后仍保持较高的光催化降解率.  相似文献   

9.
分别以NaOH、NH4HCO3-NH3·H2O和(NH4)2C2O4-NH3·H2O-NaOH为沉淀剂,利用共沉淀沸腾回流法制备锰锌功率铁氧体Mn07Zn02Fe2.1O4.然后将制备的样品用XRD、VSM和SEM测试其结构、磁性能和微观形貌.结果表明:以NaOH为沉淀剂制备的样品团聚现象严重,而以NH4HCO3-NH3·H2O和(NH4)2C2O4-NH3·H2 O-NaOH为沉淀剂制备的样品避免了大量Na+的影响,粒子之间团聚现象减弱,样品的饱和磁化强度Ms要高于以NaOH为沉淀剂的.同时,样品的矫顽力Hc也相应降低.以NH4HCO3-NH3·H2O和(NH4)2C2O4-NH3·H2O-NaOH为沉淀剂的样品晶粒均匀性较好,烧结活性好.  相似文献   

10.
用固相反应法在空气气氛中制备了Y2.1 Bi0.2Ca0.7 Zr0.3 V0.2Mnx Fe4.42-xO12(x=0,0.02,0.04,0.06,0.08)铁氧体,研究了Mn掺量和烧结温度对YBiCaZrVMnIG铁氧体烧结性能、微观结构和电磁性能的影响.研究发现,所有样品均形成单一的石榴石相.Mn的掺入使晶胞参数增加,并促进了YBiCaZrVIG铁氧体的致密化.Fe离子的数量、微观结构的变化以及晶格中离子空位的增多造成了介电损耗先显著降低后略有增加趋势.而介电损耗随着烧结温度的升高和材料的致密化先急剧下降,后由于烧结温度过高使部分Fe3+还原成Fe2+而略有增加.Mn掺量对YBiCaZrVMnIG铁氧体介电常数影响不大,但是随着烧结温度和样品致密度的提高,介电常数呈增大趋势.而饱和磁化强度4πMs随着Mn掺量的增加先呈缓慢降低趋势,后又逐渐增加,但随烧结温度的升高呈相反的变化趋势.因此,在YBiCaZrVIG铁氧体中掺杂适量的Mn 能够促进烧结,提高材料的电磁性能.综上,Mn掺量为x=0.04(Y2.1Bi0.2Ca0.7Zr0.3V0.2Mn0.04Fe4.38O12)、烧结温度为1260℃的铁氧体综合性能最佳:RD> 98;,εr=15.7,tanδe =2.1×10-4,4πMs=1629 Gs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号