首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Plane-wave density functional theory calculations were performed to investigate the binding and diffusion of hydrogen on three flat Ni surfaces, Ni(100), Ni(110), and Ni(111), and two stepped Ni surfaces, Ni(210) and Ni(531). On each surface, the favored adsorption sites were identified by considering the energy and stability of various binding sites and zero-point energy corrections were computed. Binding energies are compared with experimental and theoretical results from the literature. Good agreement with experimental and previous theoretical data is found. At surface coverages where adsorbate-adsorbate interactions are relatively weak, the binding energy of H is similar on the five Ni surfaces studied. Favorable binding energies are observed for stable surface sites, while subsurface sites have unfavorable values relative to the gas phase molecular hydrogen. Minimum energy paths for hydrogen diffusion on Ni surfaces and into subsurface sites were constructed.  相似文献   

2.
本文构造了氢-镍相互作用的5参数Morse势, 用经典的对势方法研究氢原子在Ni(100), Ni(111)和Ni(110)面上的吸附和扩散, 得到氢原子在三个表面上的吸附位、吸附几何、结合能及本征振动等数据, 和实验结果符合得很好。同时, 系统地研究了三个体系的吸附扩散势能面结构。  相似文献   

3.
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定; 而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的.表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.  相似文献   

4.
傅钢  吕鑫  徐昕  万惠霖 《分子催化》2001,15(6):484-486
应用UBI-QEP方法, 估算了CO2-在金属表面的吸附热, 并计算了CO2在Cu(111)、Pd(111)、Fe(111)、Ni(111)表面的各种反应途径的活化能垒. 结果表明, CO2-在4种过渡金属表面相对的稳定性和CO2解离吸附的活性顺序一致,均为Fe>Ni>Cu>Pd. 说明CO2-可能是CO2解离吸附的关键中间体. 在Cu、Pd、Ni表面上, CO2解离吸附的最终产物是CO,而在Fe表面其最终会解离成C和O. 在Cu、Fe、Ni表面, CO2加氢活化是一种有效模式, 而在Pd上则不容易进行. 在Cu和Pd表面,碳酸盐物种也可能是CO2活化的重要中间体.  相似文献   

5.
In this work, we have used the static molecular simulations combined with an interatomic potential derived from the embedded‐atom method to study the adsorption and hetero‐diffusion on the (111) surface of Cu, Ag, and Au adatoms by using LAMMPS code. The investigation is performed for six heterogeneous systems such as Ag/Au(111), Ag/Cu(111), Au/Ag(111), Au/Cu(111), Cu/Ag(111), and Cu/Au(111). First, we have investigated the relaxation trends and the bond lengths of the atoms in the systems. The calculation results show that, the top layer spacing between the first and second layers of the Au(111), Ag(111), and Cu(111) substrates is contracted. This contraction is found to be more important in the Au(111) substrate. On the other hand, the strong reduction of the binding length is found in Au/Cu(111) for the different adsorption sites. In addition, the binding, adsorption, and static activation energies for all studied systems were examined. The results indicated that the binding and adsorption energies reached their maximum values in the Au/Cu(111) and Au/Ag(111) systems, respectively. Moreover, the static activation barriers for hopping diffusion on the (111) surfaces are found to be low compared with those found in the (100) and (110) surfaces. Therefore, our calculations showed that the difference in energy between the hcp and fcc sites on the (111) surfaces is very small. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Using the plane-wave pseudopotential method within the density-functional theory with the generalized gradient approximation for exchange and correlation potential, we have calculated adsorption energies (E(ad)), diffusion barrier, and the first dissociation barrier (E(1)) for NH(3) on Ni and Pd surfaces. While the top site is found to be preferred for NH(3) adsorption on both Ni(111) and Pd(111), its calculated diffusion barrier is substantially higher for Pd(111) than for Ni(111). We also find that during the first dissociation step (NH(3)-->NH(2)+H), NH(2) moves from the top site to the nearest hollow site on Ni(111) and Pd(111) and on the stepped surfaces, Ni(211) and Pd(211), it moves from the initial top site at the step edge to the bridge site in the same atomic chain. Meanwhile H is found to occupy the hollow sites on all four surfaces. On Ni(111), E(1) is found to be 0.23 eV higher than E(ad), while at the step of Ni(211), E(1) and E(ad) are almost equal, suggesting that the probability for the molecule to dissociate is much on the step of Ni(211). In the case of Pd(211), however, we find that the dissociation barrier is much higher than E(ad). These trends are in qualitative agreement with the experimental finding that ammonia decomposition rate is much lower on Pd than on Ni.  相似文献   

7.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

8.
The effect of homogeneous electric fields on the adsorption energies of atomic and molecular oxygen and the dissociation activation energy of molecular oxygen on Pt(111) were studied by density functional theory (DFT). Positive electric fields, corresponding to positively charged surfaces, reduce the adsorption energies of the oxygen species on Pt(111), whereas negative fields increase the adsorption energies. The magnitude of the energy change for a given field is primarily determined by the static surface dipole moment induced by adsorption. On 10-atom Pt(111) clusters, the adsorption energy of atomic oxygen decreased by ca. 0.25 eV in the presence of a 0.51 V/A (0.01 au) electric field. This energy change, however, is heavily dependent on the number of atoms in the Pt(111) cluster, as the static dipole moment decreases with cluster size. Similar calculations with periodic slab models revealed a change in energy smaller by roughly an order of magnitude relative to the 10-atom cluster results. Calculations with adsorbed molecular oxygen and its transition state for dissociation showed similar behavior. Additionally, substrate relaxation in periodic slab models lowers the static dipole moment and, therefore, the effect of electric field on binding energy. The results presented in this paper indicate that the electrostatic effect of electric fields at fuel cell cathodes may be sufficiently large to influence the oxygen reduction reaction kinetics by increasing the activation energy for dissociation.  相似文献   

9.
The adsorption of phenol on flat and stepped Pt and Rh surfaces and the dissociation of hydrogen from the hydroxyl group of phenol on Pt(111) and Rh(111) were studied by density functional calculations. On both Pt(111) and Rh(111), phenol adsorbs with the aromatic ring parallel to the surface and the hydroxyl group tilted away from the surface. Furthermore, adsorption on stepped surfaces was concluded to be unfavourable compared to the (111) surfaces due to the repulsion of the hydroxyl group from the step edges. Transition state calculations revealed that the reaction barriers, associated with the dissociation of phenol into phenoxy, are almost identical on Pt and Rh. Furthermore, the oxygen in the dissociated phenol is strongly attracted by Rh(111), while it is repelled by Pt(111).  相似文献   

10.
We report a first-principles, periodic supercell analysis of oxygen adsorption, diffusion, and dissociation at the kinked Pt(321) surface. Binding energies and binding site preferences of isolated oxygen atoms and molecules have been determined, and we show that both atomic and molecular oxygen prefer binding in bridge sites involving coordinatively unsaturated kink Pt atoms. Binding energies of atomic and molecular oxygen in different sites correlate well with the average metallic Pt coordination number of Pt atoms forming each site, although differences exist between adsorbates in symmetrically similar sites due to the inherent chirality of the surface. Atomic O in the strongest binding bridge sites experiences relatively small energy barriers for diffusion to neighboring sites compared to O on Pt(111). However, due to the structure of the surface, O diffusion is only rapid between different sites around the kink Pt atom, whereas the effective long-range tracer diffusion, as determined from a simple course-grain model, is shown to be anisotropic and slower than on the Pt(111) surface. Four dissociation pathways for O(2) at low coverage are also reported and found to be in agreement with experimental observations of facile dissociation, even at low temperature.  相似文献   

11.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

12.
By performing with density functional theory(DFT) method, the detailed adsorption process and the catalytic decarbonylation mechanisms of furfural over Pd(111) and M/Pd(111)(M = Ni, Cu, Ru) surfaces toward furan were clarified. The results of atomic size factor, formation energy and d-band center showed that Ru/Pd(111) surface was the most stable and active. The adsorption energies of furfural on the different surfaces followed the order Ru/Pd(111) Cu/Pd(111) Pd(111) Ni/Pd(111). After analyzing Mulliken atomic charge population and the deformation density, we can find that on Ru/Pd(111) surface, the number of charge transfer was the most and the interaction was the strongest. Therefore, its adsorption energy was the highest. Furthermore, the furfural decarbonylation pathway is more kinetically feasible on bimetallic surface, and the reaction is the most likely to occur on Ru/Pd(111).  相似文献   

13.
The role of molecular rotation in dissociative adsorption of H2 on the activated NiAl(110) metal surface is systematically investigated by means of classical dynamics calculations performed on ab initio six-dimensional potential energy surfaces. The calculations show that molecules rotate abruptly when they are close to the surface and that this rotation allows the molecules to adopt the orientation that is more convenient for dissociation (i.e., nearly parallel to the surface). Also, in reactive sectors of the NiAl(110) unit cell, there is an "angular threshold" below which molecules cannot dissociate. This angular threshold goes down as the incidence energy increases, which explains the rise of the dissociation probability and the fact that it reaches a value close to 1 at incidence energies of the order of 2 eV. The fact that switching on molecular rotation favors dissociation establishes a competition between dissociation and rotational excitation of reflected molecules above the dissociation threshold. Measurements on rotational excitation might thus bring indirect evidence on the dissociation dynamics. Sample calculations for nonactivated Pd(111) and activated Cu(110) metal surfaces suggest that some of these conclusions may be of general validity.  相似文献   

14.
The adsorption and hydrogenation of carbon tetrachloride (CCl(4)) on a Pt (111) surface have been investigated using density functional theory (DFT). We have performed calculations on the adsorption energies and structures of CCl(4) on four different adsorption sites of a Pt (111) surface using the full adsorbate geometry optimization method. The results show that the adsorption energy of all of the potential sites is less than -17 kcal/mol, which indicates that CCl(4) is physiosorbed on a Pt (111) surface through van der Waals interactions. The dissociation and hydrogenation pathways were investigated by a transition state search. For the Pt(15), Pt(19), and Pt(25) cluster surfaces, the activation energies of dissociation obtained in this work are 15.69, 16.94, and 16.77 kcal/mol, respectively. The hydrogenation of CCl(3). was studied at the on-top site of the Pt(15) cluster, and the calculated activation energy is 5.06 kcal/mol. The small activation energies indicate that the Pt (111) surface has high catalytic activity for the CCl(4) hydrogenation reaction. In addition, the Hirshfeld population analysis reveals that the charge transfer from the Pt (111) surface to the adsorbates occurs in both the dissociation and hydrogenation pathways.  相似文献   

15.
CO2在金属表面活化的UBI-QEP方法研究   总被引:1,自引:0,他引:1  
应用UBI-QEP方法估算了金属表面上形成的活化吸附态CO2-在Cu(111),Pd(111),Fe(111)和Ni(111)表面上的吸附热,计算了各种相关反应的活化能垒.结果表明,CO2-在4种过渡金属表面的相对稳定性的顺序为Fe>Ni>Cu>Pd;在Fe和Ni表面上CO2-较易生成,且容易进一步发生解离反应,在Fe表面会解离成C和O吸附原子,而在Ni表面上解离的最终产物为CO和O;在Cu表面上,CO2-虽较难形成,但其加氢反应的活化能比解离反应低,因此加氢反应是其进一步活化的有效模式;在Pd表面上,CO2-吸附态在能量上很不稳定,所以CO2在Pd表面上不容易活化.  相似文献   

16.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A density-functional theory(DFT)method has been conducted to systematically investigate the adsorption of CHx(x=0~4)as well as the dissociation of CHx(x=1~4)on(111)facets of gold-alloyed Ni surface.The results have been compared with those obtained on pure Ni(111)surface.It shows that the adsorption energies of CHx(x=1~3)are lower,and the reaction barriers of CH4 dissociation are higher in the first and the fourth steps on gold-alloyed Ni(111)compared with those on pure Ni(111).In particular,the rate-determining step for CH4 dissociation is considered as the first step of dehydrogenation on gold-alloyed Ni(111),while it is the fourth step of dehydrogenation on pure Ni(111).Furthermore,the activation barrier in rate-determining step is higher by 0.41 eV on gold-alloyed Ni(111)than that on pure Ni(111).From above results,it can be concluded that carbon is not easy to form on gold-alloyed Ni(111)compared with that on pure Ni(111).  相似文献   

18.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

19.
采用密度泛函理论与周期性平板模型相结合的方法,对CO在Pt(111)表面top,fcc,hcp和bridge 4个吸附位和Pt-M(111)(M=Ni,Mg)表面h-top,M-top,Pt(M)Pt-bridge,Pt(M)M-bridge,Pt(Pt)M-bridge,M(Pt)M-bridge,Pt1M2-hcp...  相似文献   

20.
CO2 chemisorption on the Ni(111), Ni(100), and Ni(110) surfaces was investigated at the level of density functional theory. It was found that the ability of CO2 chemisorption is in the order of Ni(110) > Ni(100) > Ni(111). CO2 has exothermic chemisorption on Ni(110) and endothermic chemisorption on Ni(111), while it is thermally neutral on Ni(100). It is also found that there is no significant lateral interaction between the adsorbed CO2 at 1/4 monolayer (ML) coverage, while there is stronger repulsive interaction at 1/2 ML. On all surfaces, the chemisorbed CO2 is partially negatively charged, indicating the enhanced electron transfer, and the stronger the electron transfer, the stronger the C=O bond elongation. The bonding nature of the adsorbed CO2 on nickel surfaces has been analyzed. The thermodynamics of CO2 dissociative chemisorption, compared with CO and O adsorption, has been discussed, and the thermodynamic preference is in the sequence Ni(100) > Ni(111) > Ni(110).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号