首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
化学   5篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
甲烷氧化偶联反应(OCM)是天然气直接转化利用的重要途径之一.该反应通过甲烷和氧气在催化剂作用下一步将甲烷直接转化为乙烯等具有高附加值的产品,避免了涉及高能耗过程的合成气间接路径,不仅有可能减少中间副产物的生成,还有可能大大提升整个过程的能源利用效率.因此,研究OCM反应具有十分重要的实际意义.目前氧化镧基催化剂具有良好的催化活性、产物选择性和热稳定性,但在OCM反应中产品收率仍未能达到工业应用的要求,因而近几十年来高效OCM催化剂的研发一直是研究热点.实验发现,锶掺杂氧化镧催化剂具有更为优异的催化性能,主要表现在具有比纯氧化镧催化剂更高的催化活性和产物选择性,但对于锶掺杂的影响机制仍然缺乏系统的理论研究.目前普遍认为,甲烷活化是OCM反应的第一步,也是决速步,这主要是由于C?H键活化需要越过很高的能垒,因此往往需要很高的温度.本文主要采用团簇模型,通过密度泛函理论计算来研究OCM反应中锶掺杂对氧化镧催化剂上甲烷活化性能的影响及其作用原理.本文构建了八种锶掺杂的氧化镧团簇作为该催化剂模型,可分为没有自由基性质的团簇(LaSrO2(OH),La2SrO4,La3SrO5(OH),La5SrO8(OH))和具有自由基性质的团簇(LaSrO3,La2SrO4(OH),La3SrO6,La5SrO9).我们计算了甲烷在这些锶掺杂氧化镧团簇上Sr?O和La?O酸碱对位点以及氧自由基活性位点上的活化机制,以研究锶掺杂对OCM反应活性的影响,并与我们前期计算的纯氧化镧团簇上甲烷活化性能进行了对比.通过计算甲烷在不同锶掺杂氧化镧团簇上的物理和化学吸附能、活化能垒以及甲基自由基的脱附能,发现锶掺杂氧化镧团簇上的甲烷活化在热力学和动力学上都要比纯氧化镧团簇上更为有利.对于具有相同金属原子数目的团簇,甲烷在La?O上活化的能垒大小为:化学计量比的La?Sr?O团簇<非化学计量比的La?Sr?O团簇<化学计量比的La?O团簇;而甲烷在Sr?O上活化的能垒大小依次是:化学计量比的La?Sr?O团簇<非化学计量比的La?Sr?O团簇.给定一个锶掺杂氧化镧团簇,甲烷在不同活化位点上的活化能垒大小通常是:O·<相似文献   
2.
研究发现,Pd和Co3O4催化剂均可有效地催化甲烷燃烧反应,且Pd掺杂的Co3O4催化剂上甲烷反应活性优于单纯的Pd和Co3O4催化剂,可见两者存在明显的协同效应.然而由于Co3O4本身复杂的表面配位环境,相关理论模拟研究依然较少.同时,由于甲烷分子中C–H键有着非常高的键能,且该分子具有很高的对称性,导致C–H键活化往往是甲烷选择转化和完全燃烧反应中最困难的一步.由于Co3O4表面电子结构比较复杂,因此本文基于Co3O4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co3O4表面Pd?O位点的甲烷反应活性.对于Co3O4(001)–A晶面,暴露面金属离子只有未饱和的八面体Coo,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Coo结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co3O4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co3O4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co3O4(001)和(011)表面.为了进一步理解Pd掺杂影响Co3O4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3δ–获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co3O4(001),(011)和1%,2%,3%Pd掺杂的Co3O4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co3O4催化甲烷燃烧.  相似文献   
3.
使用密度泛函理论研究了Pd掺杂的Ni(111),Ni(100)和Ni(211)表面最稳定的结构,同时考察了干净的和Pd掺杂的Ni表面催化CH4解离反应的活性.结果表明,由Pd原子取代最外层Ni原子而形成的表面Pd掺杂的Ni表面在热力学上最为稳定,亚表面Pd掺杂的Ni表面在热力学上都不稳定; 而对于表面Pd吸附的Ni表面,只有Pd/Ni(211)表面是稳定的.表面掺杂的Pd/Ni表面上CH4解离中间体(CH4,CH3,CH,C,H)吸附能的计算结果表明,Pd的掺杂在不同程度上减弱了除CH4之外各解离中间体的吸附能.另外,CH4和CH均优先在Ni(211)和Pd/Ni(211)台阶面上解离,其次是在比较开阔的Ni(100)和Pd/Ni(100)表面上.Pd的掺杂不同程度上提高了CH4和CH解离的能垒,对于活性最高的Ni(211)面,Pd的掺杂使得CH脱氢的能垒较CH4脱氢的高,改变了其速率控制步骤,从而抑制了积碳的生成.  相似文献   
4.
5.
CO2催化加氢转化成高附加值化学品如低碳烯烃(C2=–C4=)等是减少碳排放的有效途径之一.采用金属氧化物/分子筛双功能催化剂可以实现CO2加氢直接高选择性合成C2+碳氢化合物.通常认为,金属氧化物组分可以活化CO2转化为甲醇等含氧中间体,该中间体在分子筛孔道内进一步转化为各种烃.氧化铟(In2O3)/SAPO-34双功能催化剂由于具有出色的催化CO2加氢制低碳烯烃反应性能而备受关注,然而,仍需进一步提升催化剂的催化性能以推动该反应的工业应用.目前,氧化物的结构与双功能催化剂性能之间的关系还不明确,这不利于其催化性能的改善.现有关于金属氧化物纳米粒子的尺寸(特别是小于23 nm)效应及其对双功能催化CO2加氢反应的活性和产物分布的影响的报道较少,对此深入理解将有利于设计更高性能的催化剂.本文采用沉淀法,通过控制焙烧温度得到了一系列尺寸为7~28 nm的立方相In2O3,通过多种表征手段探究了In2O3的尺寸对其结构与表面化学性质的影响.结果表明,随着In2O3晶粒尺寸的减小,其氧空位数目、CO2、H2与NH3吸附量以及Lewis较强酸性位比例均逐渐增加.在350oC,3 Mpa,9000 mL·gcat–1·h–1和H2/CO2比为3的反应条件下,研究了In2O3/SAPO-34双功能催化剂中In2O3粒径对其催化CO2加氢制低碳烯烃反应性能的影响.结果表明,随着双功能催化剂中In2O3尺寸的增大,低碳烯烃(尤其是丙烯)选择性、收率及烯烃与烷烃比例均先升高后降低,在尺寸为19 nm的In2O3上达到最大值,分别为76.9%、12.3 mmol goxide–1 h–1和4.8.较小尺寸的In2O3虽然具有较大的比表面积和更多的氧空位,并为CO2和H2的活化提供了更多的活性位,但小于19 nm的颗粒更容易烧结;In2O3的尺寸还会影响其与SAPO-34的协同效应,进而影响双功能催化剂的催化活性.此外,相对于其它尺寸的In2O3,19 nm的In2O3更有利于甲醇中间体的生成.因而19 nm In2O3耦合SAPO-34的双功能催化剂性能最好,其催化CO2转化率最高,为14.1%.综上,适中尺寸的In2O3能够促进In2O3/SAPO-34上CO2加氢制低碳烯烃反应.这些结果为通过平衡结构稳定性和催化性能来设计更有效的催化CO2转化的复合催化剂提供了理论指导.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号