首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using a stroboscopic technique, in which the molecule is repeatedly excited and the structural change is probed more than 5000 times per second immediately after excitation, we performed a 16 K time-resolved single-crystal study of the microsecond lifetime triplet state of the Cu(I)phenanthroline derivative[Cu(I)(dmp)(dppe)][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane). The geometry changes on excitation differ for the two symmetry-independent molecules, but are in the same direction as calculated for an isolated reference molecule, although the flattening distortion in the crystal is significantly smaller, implying that the reorganization energy is greatly affected by the confining medium.  相似文献   

2.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

3.
Zhou XP  Li D  Zheng SL  Zhang X  Wu T 《Inorganic chemistry》2006,45(18):7119-7125
The reactions of 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tpt) with copper(I) halides under solvothermal or traditional conditions yielded two polymeric Cu(I) complexes [Cu2I2(tpt)]n (1) and [Cu3I3(tpt)]n (2), one mixed-valence Cu(I)-Cu(II) complex [Cu4Cl2I4(tpt)2] (3), and two Cu(II) complexes [CuBr(bpca)] (4) and [CuI(bpca)] (5) (bpca = bis(2-pyridylcarbonyl)amine). Complex 1 is a zigzag chain with tpt in a bis-bipyridine-like coordination mode, whereas complex 2 with tpt chelating three Cu(I) cations is a ladderlike coordination polymer. Complex 3 is mixed-valence, with Cu(I) in a distorted tetrahedral geometry and Cu(II) in a distorted square pyramidal geometry, forming a ladderlike supramolecular chain. Complexes 4 and 5 are the products of in situ hydrolysis of tpt involving the oxidation of Cu(I). The synthesis and characterization of complex 1, 2, and 5 indicated that Cu(I) cannot promote the hydrolysis of tpt. The theoretical study shows that the main effect for hydrolysis of tpt is the electron-withdrawing effect of metal ions.  相似文献   

4.
New molecular complexes of fullerenes C60 and C70 with tetraphenylporphyrins [M(tpp)] in which M-H2, MnII, CoII, CuII, ZnII and Fe(III)Cl, have been synthesised. Crystal structures of two C60 complexes with H2TPP, which differ only in the number of benzene solvated molecules, and C60 and C70 complexes with [Cu(tpp)] have been studied. The fullerene molecules form a honeycomb motif in H2TPP.2C60. 3C6H6, puckered graphite-like layers in H2TPP.2C60.4C6H6, zigzag chains in [Cu(tpp)].C70.1.5C7H8.0.5C2HCl3 and columns in [Cu(tpp)]2.C60. H2TPP has van der Waals contacts with C60 through nitrogen atoms and phenyl groups. Copper atoms of the [Cu(tpp)] molecules are weakly coordinated with C70, but form no shortened contacts with C60. The formation of molecular complexes with fullerenes affects the ESR spectra of [M(tpp)] (M = Mn, Co and Cu). [Mn(tpp)] in the complex with C70 lowers its spin state from S = 5/2 to S = 1/2, whereas [Co(tpp)] and [Cu(tpp)] change the constants of hyperfine interaction. ESR, IR, UV-visible and X-ray photoelectron spectroscopic data show no noticeable charge transfer from the porphyrinate to the fullerene molecules.  相似文献   

5.
Treatment of CuF(2) with 2 equiv of 3{5}-[pyrid-2-yl]pyrazole (Hpz(Py)), 3{5}-phenylpyrazole (Hpz(Ph)) or 3{5}-[4-fluorophenyl]pyrazole (Hpz(PhF)) in MeOH, followed by evaporation to dryness and recrystallisation of the solid residues, allows solvated crystals of [{Cu(micro-pz(Py))(pz(Py))}(2)] (1), [{Cu(micro-pz(Ph))(2)}(4)] (2) and [Cu(4)F(2)(micro(4)-F)(micro-pz(PhF))(5)(Hpz(PhF))(4)] (3) to be isolated in moderate-to-good yields. Similar reactions of these three pyrazoles with Cu(OH)(2) in refluxing MeOH respectively afford 1, 2 and [Cu(pz(PhF))(2)(Hpz(PhF))(2)] (4) in ca. 10% yield. Crystalline 1 x 1/2H(2)O x 2CHCl(3) contains two independent dinuclear molecules with a puckered di-(1,2-pyrazolido) bridge motif, linked by a bridging, hydrogen-bonding water molecule. Compound 2 x 1/2C(5)H(12), containing cyclic, square tetranuclear complex molecules, is the first homoleptic divalent metal pyrazolide to have a discrete molecular rather than polymeric structure, for a metal other than Pd or Pt. The two independent complex molecules in 3 x 3/4CH(2)Cl(2) x Hpz(PhF) contain a unique tetrahedral [Cu(4)(micro(4)-F)](7+) core, three of whose edges are spanned by bridging pyrazolido groups. Magnetic data show that the copper centres in 1 and 3 are antiferromagnetically coupled, but that dried bulk samples of 2 do not retain their molecular structure.  相似文献   

6.
TMEDA-free (TMEDA: tetramethylethylenediamine) LiCH(2)SMe is a suitable reagent for the selective introduction of (methylthio)methyl groups into PhBBr(2) and its p-silylated derivative Me(3)Si--C(6)H(4)--BBr(2). The resulting compounds, R*--C(6)H(4)--B(Br)(CH(2)SMe) (R*=H: 2; R*=SiMe(3): 7) and PhB(CH(2)SMe)(2) (3), form cyclic dimers through B--S adduct bonds in solution and in the solid state. Compounds 2 and 3 have successfully been used for preparing the (N(2)S) scorpionate [PhBpz(2)(CH(2)SMe)](-) ([5](-)) (pz: pyrazol-1-yl) and the (NS(2)) scorpionate [PhBpz(CH(2)SMe)(2)](-), respectively. Compound 7 proved to be an excellent building block for the heteroditopic poly(pyrazol-1-yl)borate p-[pz(3)B--C(6)H(4)--Bpz(2)(CH(2)SMe)](2-) ([10](2-)) that mimics the two ligation sites of the copper enzymes peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase. Treatment of the monotopic tripod [5](-) with CuCl and CuBr(2) results in the formation of complexes K[Cu(5)(2)] and [Cu(5)(2)]. An X-ray crystallography study of K[Cu(5)(2)] revealed a tetrahedral (N(2)S(2)) coordination environment for the Cu(I) ion, whereas the Cu(II) ion of [Cu(5)(2)] possesses a square-pyramidal (N(4)S) ligand sphere (S-atom in the axial position). The remarkable redox properties of K[Cu(5)(2)] and [Cu(5)(2)] have been assessed by cyclic voltammetry and quantum chemical calculations. The reaction of K[Cu(5)(2)] with dry air leads to the Cu(II) species [Cu(5)(2)] and to a tetranuclear Cu(II) complex featuring [PhB(O)pz(2)](2-) ligands. Addition of CuCl to K(2)[10] gives the complex K(3)[Cu(10)(2)] containing two ligand molecules per Cu(I) center. The Cu(I) ion binds to both heteroscorpionate moieties and thereby establishes a coordination environment similar to that of the Cu(I) ion in K[Cu(5)(2)].  相似文献   

7.
A novel neutral triple-stranded hexanuclear copper(I) cluster helicate [Cu(I)(6)L(3)]·2CH(3)CN derived from a thiosemicarbazone ligand could be synthesized and crystallographically characterized. The MALDI mass spectrum of this complex suggests that the tetranuclear copper(I) cluster helicate [Cu(I)(4)L(2)] is also present in solution. These copper(I) cluster helicates are capable, in the presence of O(2), of hydroxylating the arene linker of their supporting ligand strands. The resulting dinuclear complex [Cu(II)(2)L'(OH)] is formed by two copper(II) centers, a new ligand arising from the hydroxylation reaction, and one hydroxide group. The magnetic investigation of this compound shows a strong antiferromagnetic coupling between the two Cu(II) centers. The kinetic studies for the hydroxylation process show values of ΔH(≠)=-70 kJ mol(-1), similar to those mediated by the tyrosinase enzymes.  相似文献   

8.
本文利用水热法合成了两个新型一价铜配合物[Cu2(ophen)2]·H2O的类同质多晶结构(1a和1β)和一个混合价的铜配合物[Cu2(obpy)2(NO3)·H2O(2).晶体结构分析表明:1a显现出于无水的类似物[Cu2(ophen)2]相同的堆积方式,1β则形成出新奇的空间堆积.混合价化合物2是完全离域的,通过氢键集聚体[(H2O)2(NO3-)2]将两个[Cu2(obpy)2]+单元连接起来形成哑铃状的四核结构.  相似文献   

9.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

10.
Syntheses, structures, and properties of univalent coinage metal 2-methylimidazolate supramolecular isomers [M(mim)] (1, M = Cu; 2, M = Ag) were investigated in detail. In addition to the known isomers, namely, zigzag chains [Cu(mim)] (1a) and [Ag(mim)] (2a), molecular octagon [Cu(8)(mim)(8)]·C(6)H(6) (1b), decagon [Cu(10)(mim)(10)]·C(8)H(10) (1c), helical chain [Ag(4)(mim)(4)]·C(6)H(6) (2b), and S-shaped chain [Ag(4)(mim)(4)]·C(8)H(10) (2c), two new structures including a polyrotaxane [Cu(10)(mim)(10)]·[Cu(mim)] (1d, C2/m, a = 14.452(4) ?, b = 27.712(7) ?, c = 11.427(3) ?, β = 125.899(4)°, V = 3707(2) ?(3)) and a new octagon [Ag(8)(mim)(8)]·Me(2)CO (2d, C2/c, a = 21.852(3) ?, b = 12.101(2) ?, c = 20.907(3) ?, β = 90.875(2)°, V = 5528(2) ?(3)) were discovered. The potential porous properties of guest-containing [M(mim)] isomers were studied by thermogravimetry, X-ray powder diffraction, vacuum thermal desorption, and CO(2) sorption experiments. The isomers show distinctly different guest removal behaviors depending on their pore structures. By heating, the guest-containing isomers, 1b-1c and 2b-2d, undergo irreversible, two-step, crystal-to-crystal structural transformations to form the guest-free isomers 1a or 2a, respectively. Except 1b, other guest-containing isomers can retain their porous structures after removal of the template molecules, which were confirmed by CO(2) sorption experiments.  相似文献   

11.
Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H)2]·2H2O (1) and [Cu2Cl2(pyz)(H2O)]·H2O (2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N,N′,O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz)2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu–N bond lengths are 2.009(6) Å and Cu–Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C5H3N2O2)Cl2(H2O)] interconnected by [Cu(I)Cl2N] tetrahedral unit and [Cu(II)NO2Cl2] polyhedra. The Cu(I)–Cl and Cu(I)–N distances are 2.327(2)–2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)–Cl and Cu(II)–N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O–HO are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.  相似文献   

12.
Solutions of the Ni(IV) complex of the dianion of 2,6-diacetylpyridine dioxime (chelate II in text) are reduced very slowly by 2-aminoethanethiol at pH 2.3-3.0, but this reaction is catalyzed dramatically and specifically by dissolved copper, with Cu(I) the active reductant. When the [thiol]/[Ni(IV)] ratio exceeds 1.6, each Ni(IV) oxidizes two molecules of thiol, forming Ni(II) and R(2)S(2). At low concentrations of catalyst and reductant, reaction profiles are almost exponential, but at higher concentrations of either, curves become progressively more nearly linear. Reactions are sharply retarded by increases in acidity. Profiles for 14 runs, carried out with [H(+)] = 0.001-0.0040 M, [Ni(IV)] = (0.94-1.2) x 10(-)(5) M, [thiol] = (2.0-32) x 10(-)(4) M, and [Cu(2+)] = (2.5-80) x 10(-)(6)M, are consistent with a reaction sequence (eqs 2-10 in text) in which Cu(I) is generated in competing homolyses of the complexes Cu(II)(SRH) and Cu(II)(SRH)(2). Reduction of Ni(IV) appears then to proceed through a Ni(IV)Cu(I) adduct, which can undergo electron transfer (yielding Ni(III) and Cu(II)), either in a unimolecular fashion or, alternatively, as a result of attack by a second Cu(I) species. The Ni(IV)Cu(I) + Cu(I) process is reflected in approach to second-order dependences on [Cu(II)] and [thiol] (which generate Cu(I)) at high concentrations of these reagents. Reductions of the Ni(III) intermediate are taken to be much more rapid than those of Ni(IV). Kinetic trends in the present system stand in contrast to the more familiar catalytic patterns such as those seen when the same combination of thiol and catalyst is used to reduce superoxo complexes of cobalt(III). With the latter reactions, decay profiles for the oxidant tend to be exponential at high reagent concentrations but approach linearity at low.  相似文献   

13.
α-Methoxypolyethylene oxide methacrylate was polymerized by copper(I)-mediated living radical polymerization in aqueous solution to give polymers with controlled number-average molecular masses and narrow polydispersities. When equimolar quantities of initiator with respect to copper(I) bromide were used, the reaction was extremely fast with quantitative conversion achieved in less than 5 min at ambient temperature. However, the molecular weight distribution was broad, and control over the number-average molecular weight (Mn) growth was extremely poor; this is ascribed to an increase in termination because of the increased rate as a result of the coordination of water at the copper center. The complex formed between copper(I) bromide and N-(n-propyl)-2-pyridylmethanimine, bis[N-(n-propyl)-2-pyridylmethanimine]copper(I), was demonstrated to be stable in aqueous solution by 1H NMR over 10 h at 25 °C. However, on increasing the temperature to 50 °C, decomposition occurred rapidly. Thus, polymerization temperatures were maintained at ambient temperature. When longer alkyl chains were utilized in the ligand, that is, pentyl and octyl, the complex acted as a surfactant leading to heterogeneous solutions. When the catalyst concentration was reduced by two orders of magnitude, the rate of polymerization was reduced with 100% conversion achieved after 60 min with the Mn of the final product being higher than that predicted and the polydispersity equal to 1.43. Copper(II) was added as an inhibitor to circumvent these problems. When 10% of Cu(I) was replaced by Cu(II) {[Cu(I)] + [Cu(II)]/[I] = 1/100}, the mass distribution showed a bimodal distribution, and the rate of polymerization decreased significantly. With a catalyst composition [Cu(I)]/[Cu(II)] = 0.5/0.5 {[Cu(I)] + [Cu(II)]}/[I] = 1/100, polymerization proceeded slowly with 80% conversion reached after 22 h. Thus, the concentration of Cu(I) was further reduced with [Cu(I)]/[Cu(II)] = 10/90, {[Cu(I)] + [Cu(II)]}/[I] = 1/100. The system then contained [Initiator]/[Cu(I)] = 1000/1 and [I]/[Cu(II)] = 1000/9. Under these conditions, the reaction reached 50% after 5 h with the polymer having both an Mn close to the theoretical value and a narrow polydispersity of PDi = 1.15. Optimum results were obtained by increasing the amount of catalyst. When a ratio of [Cu(I)]/[Cu(II)] = 10/90 with a ratio of [Cu]/[I] = 1/1, a conversion of 100% was achieved after less than 20 h, leading to a product having Mn = 8500 and PDi = 1.15. Decreasing the amount of Cu(II) relative to Cu(I) to [Cu(I)]/[Cu(II)] = 0.5/0.5 (maintaining the overall amount of copper) led to 100% conversion after 75 min: Mn = 9500, PDi = 1.10. Block copolymers have been demonstrated by sequential monomer addition with excellent control over Mn and PDi. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1696–1707, 2001  相似文献   

14.
Yang  Ruina  Lin  Kunhua  Hou  Yimin  Wang  Dongmei  Jin  Douman  Luo  Baosheng  Chen  Liaorong 《Transition Metal Chemistry》1997,22(3):254-258
Binuclear copper(I) complexes [Cu(dppm)(NO3)]2 (1), dppm=Ph2PCH2PPh2, [Cu(dppm)(2,9-Me2Phen)]2(NO3)2 (2), [Cu(dppm)(I)]2 (3) and [Cu(dppm)(py)]2(NO3)2 (4), (py=pyridine) have been synthesized by ligand reduction of cupric nitrate with dppm in EtOH and characterized by elemental analyses, molecular weight determination, t.g.a., 31P-n.m.r spectra; their electronic conductivities and c.v. waves have also been measured. The results show that dppm coordinates as a bridging bidentate ligand to the CuI atoms, and that NO3 behaves as a monodentate ligand or free ion in the newly prepared complexes.  相似文献   

15.
16.
New supramolecular copper complexes with pyrazinotetrathiafulvalene (pyra-TTF) as the ligand, [Cu(II)Cl2(pyra-TTF)] (1) and (pyra-TTF) 2[Cu(I)3Cl4(pyra-TTF)] (2), have been synthesized by the diffusion method. Complex 1 is a black block crystal with a three-dimensional (3-D) supramolecular network; the linear chain [-Cu(II)Cl2-(pyra-TTF)-] n extends along the b axis, where the coordinated pyra-TTF donors are stacked in a head-to-tail and ring-over-bond configuration to construct two-dimensional (2-D) sheets, and between the sheets, there are C...Cl(-) or H...Cl(-) contacts. Even though the electron spin resonance (ESR) measurement reveals the nearly Cu(II) state, complex 1 is a semiconductor with sigmaRT=1.0 x 10(-4) S cm(-1) and Ea=0.33 eV. The high-frequency conductivity measurement also confirmed the intrinsic slight carrier doping from Cu(II) to the pyra-TTF donor. This slight doping enhances not only the real and imaginary dielectric constants but also the antiferromagnetic interaction between Cu(II) spins following the 2-D Heisenberg model with 2J=-20 K. In contrast, complex 2 is a very thin black needle. This needle crystal has two crystallographically independent pyra-TTF molecules, which are coordinated and noncoordinated donors. The coordinated donors composed a supramolecular chain [Cu(I)3Cl4(pyra-TTF)(0)]n , whereas the noncoordinated donors formed conducting alpha'-type pyra-TTF(+0.5) sheets. This complex is semiconducting with sigmaRT=0.1 S cm(-1) and Ea=0.15 eV. Both complexes 1 and 2 demonstrate that the pyra-TTF molecule works not only as an oxidized donor by Cu(II) to construct conducting sheets but also as a ligand coordinated to a Cu cation to form supramolecuar chains.  相似文献   

17.
In this paper, we report the synthesis, crystal structure, photophysical properties, and electronic nature of a phosphorescent Cu(I) complex of [Cu(TBT)(POP)]BF4, where TBT and POP stand for 4,5,9,14-tetraaza-benzo[b]triphenylene and bis(2-(diphenylphosphanyl)phenyl) ether, respectively. [Cu(TBT)(POP)]BF4 renders a red phosphorescence peaking at 622 nm, with a long excited-state lifetime of 13.2 μs. Density functional calculation reveals that the emission comes from a triplet metal-to-ligand-charge-transfer excited state. We electrospun composite nanofibers of [Cu(TBT)(POP)]BF4 and polystyrene, hoping to explore the possibility of replacing precious-metal-based oxygen sensors with cheap Cu-based ones. The finally obtained samples with average diameter of ~700 nm exhibit a maximum sensitivity of 5.8 toward molecular oxygen with short response/recovery time (5/13 s) due to the large surface-area-to-volume ratio of nanofibrous membranes. No photobleaching is detected in these samples. All these results suggest that phosphorescent Cu(I) complexes doped nanofibrous membranes are promising candidates for low-cost and quick-response oxygen-sensing materials.  相似文献   

18.
The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.  相似文献   

19.
A copper(I) compound [(L2)Cu(MeCN)2][ClO4] (1) containing a new bidentate N-donor ligand L2, 1-benzyl-[3-(2'-pyridyl)]pyrazole, derived from the condensation of HL1 [HL1 = 3-(2-pyridyl)pyrazole] and benzyl chloride, has been synthesized. Structural analysis reveals that in the copper(I) centre is coordinated by a pyridine and a pyrazole nitrogen from L2 and two MeCN molecules, providing a distorted tetrahedral geometry. Reaction of with dioxygen in N,N'-dimethylformamide (dmf) at 25 degrees C and subsequent workup with MeCO2Et afforded an acetato-/pyrazolato-bridged polymeric copper(II) compound [(mu-L1)Cu(mu-O2CMe)]n (2). Notably, the deprotonated form of HL(1) and MeCO2- have originated from debenzylation of L2 and hydrolysis of MeCO2Et, respectively. The structural analysis of reveals a near-planar {Cu2(mu-L1)2}2+ core unit in which two adjacent Cu(II) ions are bridged by the deprotonated N,N-bidentate pyridylpyrazole units of two L1 and each such {Cu2(mu-L1)2}2+ unit is bridged by MeCO2- in a monodentate bridging mode [Cu...Cu separations (A): 3.9232(4) pyrazolate bridge; 3.3418(4) acetate bridge], providing a polymeric network. Careful oxygenation of in MeCN led to the isolation of a dihydroxo-bridged dicopper(II) compound [{(L2)Cu(mu-OH)(OClO3)}2] (3). Interestingly, complex brings about hydrolysis of MeCO2Et under mild conditions (dmf, ca. 60 degrees C), generating a bis-mu-1,3-acetato-bridged dicopper(II) complex, [{(L2)Cu(dmf)(mu-O2CMe)}2][ClO4]2.dmf.0.5MeCO2H (4). Compounds and have {Cu2(mu-OH)2}2+ [Cu...Cu separation of 2.8474(9) A] and {Cu2(mu-O2CMe)2}2+ cores [Cu...Cu separation: 3.0988(26) and 3.0792(29) A (two independent molecules in the asymmetric unit)] in which each Cu(II) centre is terminally coordinated by L2. A rationale has been provided for the observed debenzylation of L2 and hydrolysis of MeCO(2)Et. The intramolecular magnetic coupling between the Cu(II) (S = 1/2) ions was found to be ferromagnetic (2J = 82 cm(-1)) in the case of , but antiferromagnetic for (2J = -158 cm(-1)) and (2J = -96 cm(-1)). Absorption and EPR spectroscopic properties of the copper(II) compounds have also been investigated.  相似文献   

20.
The chain [ Cu2I2(PPh3)2(C4H5N3)] has been synthesized and characterized by X-ray crystallography.It crystallizes in the triclinic system,space group P 1,with a=0.9985(2)nm,b=1.0998(2)nm,c=1.5174(2)nm,a=87.89(1),P=76.73(l),7=77.77(1),V=1.5849(5)nm3,Z=2,Bc=2.095g/cm3 [Gu2I2(PPh3)2(Crh5N3)] has a dimmer unit [Cu2I2(PPh3)2(C4H5N3)].The two N atoms of the phenyl ring of 2-aminopyrimidine bridge two [CuI(PPh3)]2 units,by which a one-dimensional chain is constructed.The van der Waals force makes the molecules arrange in the three-dimensional space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号