首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystallization of a hydrogen-charged melt-spun Mg76Ni19Y5 amorphous alloy was studied in order to understand the influence of hydrogen absorbed on the crystallization kinetics and mechanism. Hydrogenation does not affect the thermal stability, but decreases significantly the enthalpy of crystallization. The glass transition, which is well manifested in the hydrogen-free alloy, is not observed after hydrogen charging. The main crystalline phases in the H-free and H-charged alloys are the same after complete transformation, but with finer microstructure for the hydrogenated samples.Analysis of the crystallization kinetics reveals that during annealing of hydrogen charged Mg76Ni19Y5 growth of nanocrystals surrounded by amorphous phase takes place just in the beginning of the transformation, followed by grain growth in fully crystallized material, which is the main process.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
Skeletal Ni catalysts were prepared from Ni–Zr alloys, which possess different chemical composition and atomic arrangements, by a combination of thermal treatment and treatment with aqueous HF. Hydrogen generation from ammonia borane over the skeletal Ni catalysts proceeded efficiently, whereas the amorphous Ni–Zr alloy was inactive. Skeletal Ni prepared from amorphous Ni30Zr70 alloy had a higher catalytic activity than that prepared from amorphous Ni40Zr60 and Ni50Zr50 alloys. The atomic arrangement of the Ni–Zr alloy also strongly affected the surface structure and catalytic activities. Thermal treatment of the amorphous Ni–Zr alloys at a temperature slightly lower than the crystallization temperature led to an increase of the number of surface‐exposed Ni atoms and an enhancement of the catalytic activities for hydrogen generation from ammonia borane. The skeletal Ni catalysts also showed excellent durability and recyclability.  相似文献   

3.
The review collates the results of studies on the chemical dispersion and phase transformations of Ti, Zr, and Y alloys with iron and nickel during the reaction with ammonia at a pressure of 0.6—0.8 MPa in the temperature range of 100—500 °C in the presence of NH4Cl as the activator. Promising working materials for metal hydride hydrogen storage, including alloys (Ti90Mg10, Y67Fe33, and Ti67Fe33) and intermetallics (Ti2Ni, Zr2Ni, Zr3Al2, ZrV2), are considered. At 150—250 °C, the mentioned intermetallics absorb considerable amounts of hydrogen with conservation of the initial metallic lattice and formation of the highly dispersed hydrides Ti2NiH3.3, Zr2NiH4.7, Zr3Al2H1.1, and ZrV2H2.2. The phase transformations taking place on heating of the intermetallics from 250 to 500 °C, resulting in mixtures of intermetallic hydridonitrides and metal nitrides, are elucidated. The transformation products of the Ti90Mg10, Y67Fe33, and Ti67Fe33 alloys in ammonia atmosphere in the temperature range of 100—500 °C are established.  相似文献   

4.
Skeletal Ni catalysts were prepared from an amorphous Ni40Zr60 alloy (a‐NiZr) by heating at various temperatures under vacuum, followed by the selective extraction of Zr moieties by an HF treatment. Each sample was characterized by various spectroscopic methods, and the catalytic performance was tested in the hydrogenation of 1‐octene. The differences in preparation temperatures of a‐NiZr strongly affected the catalytic performance of the obtained catalysts, whereby those prepared from heated a‐NiZr in the pre‐crystallization state exhibited higher catalytic activity. Especially, moderate thermal treatment of a‐NiZr at a temperature slightly lower than that for its crystallization, that is, ~573 K, resulted in a significant enhancement of the catalytic activity. Such prepared skeletal Ni catalyst can also be used efficiently for hydrogen generation from aqueous hydrazine.  相似文献   

5.
采用感应熔炼技术在Ar气氛保护下制备得到LaMg2Ni与Mg2Ni合金。X射线衍射(XRD)图表明LaMg2Ni合金在吸氢过程中分解为LaH3相和Mg2NiH4相,放氢过程中LaH3相转化为La3H7相。与Mg2Ni合金相比,LaMg2Ni合金显示出优良的吸氢动力学性能,这是由于镧氢化合物的存在及其在吸氢过程中所发生的相转变所造成的。LaMg2Ni合金280 s内吸氢即可达到最大储氢量的90%以上,而Mg2Ni合金则需要1200 s才能达到,且在相同温度下LaMg2Ni合金的吸氢反应速率常数大于Mg2Ni合金速率常数。镧氢化合物不仅有利于改善动力学性能,而且可以提高热力学性能。LaMg2Ni合金中的Mg2Ni相氢化反应焓与熵分别为-53.02 kJ.mol-1和84.96 J.K-1.mol-1(H2),这一数值小于单相Mg2Ni氢化反应焓与熵(-64.50 kJ.mol-1,-123.10 J.K-1.mol-1(H2))。压力-组成-温度(P-C-T)测试结果表明在603 K至523 K温度范围内,LaMg2Ni合金储氢容量保持稳定为1.95wt%左右,然而Mg2Ni合金的储氢容量则由4.09wt%衰减为3.13wt%,Mg2Ni合金的储氢容量在523K低温下仅为603 K时的76.5%,表明镧氢化合物能够改善Mg2Ni合金低温下的吸放氢性能。  相似文献   

6.
Amorphous alloy membranes composed primarily of Ni and early transition metals (ETMs) are an inexpensive alternative to Pd-based alloy membranes, and these materials are therefore of particular interest for the large-scale production of hydrogen from carbon-based fuels. Catalytic membrane reactors can produce hydrogen directly from coal-derived synthesis gas at 400 °C, by combining a commercial water–gas-shift (WGS) catalyst with a hydrogen-selective membrane. In order to explore the suitability of Ni-based amorphous alloys for this application, the thermal stability and hydrogen permeation characteristics of Ni–ETM amorphous alloy membranes has been examined. A fundamental limitation of these materials is that hydrogen permeability is inversely proportional to the thermal stability of the alloy. Alloy design is therefore a compromise between hydrogen production rate and durability. Amorphous Ni60Nb40−XZrX membranes have been tested at 400 °C in pure hydrogen, and in simulated coal-derived gas streams with high steam, CO and CO2 levels, without severe degradation or corrosion-induced failure. Ni–Nb–Zr amorphous alloys are therefore prospective materials for use in a catalytic membrane reactor for coal-derived syngas.  相似文献   

7.
本文通过XRD、SEM、EDS研究了Ti0.4Zr0.1V1.1Mn0.5Cr0.1Nix(x=0,0.2,0.4,0.6,0.8)合金的相结构和电化学性能。该合金系由BCC结构的V基固溶体主相和六方结构的C14 Laves第二相组成,Ni能够促进第二相的生成,Ni含量的增加导致了各相中的化学组成和晶格参数的变化,并通过电化学方法研究了Ni含量对0.4Zr0.1V1.1Mn0.5Cr0.1合金电极的最大放电容量、自放电性能、高倍率放电性能、循环稳定性能等的影响。  相似文献   

8.
Laves-phase hydrogen storage alloy has a high potential for use as negative electrode material as alternative for the misch-metal-based material. In order to improve the energy density and the rate capability of negative electrode, chemical and mechanical modification of Lavesphase alloy with different stoichiometric ratios was carried out. Discharge capacity and high-rate dischargeabilty was evaluated by electrochemical methods and the characterization of Laves-phase alloy was made by X-ray diffraction, SEM observation and PCT measurement. The best result in discharge capacity could be obtained for stoichiometric Laves-phase alloy with a composition of Zr0.9Ti0.1Ni1.1Co0.1Mn0.5V0.2Cr0.1 by boiling in 10 M KOH solution. On the other hand, the high-rate dischargeability was increased remarkably by introducing mechanical grinding before alkali treatment. The cause for improved performance was discussed on the basis of thermodynamic stability of metal hydride and changes in crystal structure and surface morphology influencing on diffusion coefficient and diffusion path length of hydrogen.  相似文献   

9.
Smili  B.  Abadlia  L.  Bouchelaghem  W.  Fazel  N.  Kaban  I.  Gasser  F.  Gasser  J. G. 《Journal of Thermal Analysis and Calorimetry》2019,136(3):1053-1067

In this paper, the electronic transport properties of as-spun Zr66.7Ni33.3 alloys were studied in detail by a combination of electrical resistivity and absolute thermoelectric power measurements over a temperature range from 25 up to 400 °C. Moreover, the isochronal and isothermal crystallization kinetics of Zr66.7Ni33.3 glassy alloy has been investigated based on the electrical resistivity measurements. The comparative study of the crystallization kinetics of these binary amorphous alloys was carried out, for the first time to our knowledge, using an accurate method for electrical resistivity measurements. In the isochronal heating process, the apparent activation energy for crystallization was determined to be, respectively, 371.4 kJ mol−1 and 382.2 kJ mol−1, by means of Kissinger and Ozawa methods. The Johnson–Mehl–Avrami model was used to describe the isothermal transformation kinetics, and the local Avrami exponent has been determined in the range from 2.97 to 3.23 with an average value of 3.1, implying a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. Based on an Arrhenius relationship, the local activation energy was analyzed, which yields an average value Ex = 376.2 kJ mol−1.

  相似文献   

10.
采用XRD、FESEM-EDS、ICP及EIS等方法研究了Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构和电化学性能。X射线衍射分析表明:该合金由体心立方结构(bcc)的V基固溶体主相和少量六方结构的C14型Laves相组成;FESEM及EDS分析表明:V基固溶体主相形成树枝晶,C14型Laves相呈网格状围绕着树枝晶的晶界,元素在两相中的分布呈现镜像关系。电化学性能测试结果表明:该合金的氢化物电极在303~343 K较宽的温度区间内,表现出较高的电化学容量,在303 K和343 K时,电化学容量分别为337.0 mAh·g-1和327.9 mAh·g-1。在303 K循环100周后,容量为282.7 mAh·g-1。ICP分析结果表明,氢化物电极在充放电循环过程中,V及Zr元素向KOH电解质中的溶出较为严重。EIS研究表明,金属氢化物电极表面电化学反应的电荷转移电阻(RT)随循环次数的增加而增加,相应的交换电流密度则随循环次数的增加而降低。氢化物电极循环过程中RT的增大以及V和Zr元素的溶解,可能是导致电极容量衰减的主要原因。  相似文献   

11.
The activity of amorphous and crystalline Cu60Zr40 alloys has been studied. Preoxidation of the alloys results in enhanced activity. The amorphous samples reveal a lower catalytic activity. An active catalyst for the oxidation of CO is obtained from the crystalline copper-zirconium alloy.  相似文献   

12.
本文研究了稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd,Gd;x=0.01)合金均有V基固溶体相和C14型Laves相两相组成。合金中两相的晶格参数随加入稀土元素的不同而发生变化。稀土元素部分取代可改善合金电极的活化性能。然而,对合金电极的其他性能影响因元素种类不同而各异。Ce取代增大了合金电极的最大放电容量,Nd元素可以有效改善合金的高倍率放电性能。工作温度对合金电极的放电容量影响较大,Nd和Gd在333 K最大放电容量可达426和465 mAh.g-1。过高的温度使其循环容量衰减加剧。  相似文献   

13.
Mg-based hydrogen storage alloys MgNi, Mg0.9Ti0.1Ni, and Mg0.9Ti0.06Zr0.04Ni were successfully prepared by means of mechanical alloying (MA). The structure and the electrochemical characteristics of these Mg-based materials were studied. The X-ray diffraction (XRD) result shows that the main phases of the alloys exhibit amorphous structure. The scanning electron microscopy (SEM) photograph shows that the particle size of Ti and Zr substituted alloys was about 2-4 μm in diameter. The cycle lives of the alloys were prolonged by adding Ti and Zr. After 50 charge-discharge cycles, the discharge capacity of Mg0.9Ti0.06Zr0.04Ni was 91.74% higher than that of MgNi alloy and 37.96% higher than that of Mg0.9Ti0.1Ni alloy. The main reason for the electrode capacity decay is the formation of Mg(OH)2 (product of Mg corrosion) at the surface of alloy. The potentiodynamic polarization result indicates that Ti and Zr doping improves the anticorrosion in an alkaline solution. The electrochemical impedance spectroscopy (EIS) results suggest that proper amount of Ti and Zr doping improves the electrochemical catalytic activity significantly.  相似文献   

14.
The crystallization behavior of amorphous Fe–Cr–B–Si alloys in the presence of Ni and Nb elements was the goal of this study. In this regard, four different amorphous–nanocrystalline Fe40Cr20Si15B15M10 (M=Fe, Nb, Ni, Ni0.5Nb0.5) alloys were prepared using mechanical alloying technique up to 20 h. Based on the achieved results, in contrast to Fe50Cr20Si15B15 alloy, the amorphous phase can be successfully prepared in the presence of Ni and Nb in composition. Although the crystallization mechanism of prepared amorphous phase in different alloys was the same, the Fe40Cr20Si15B15Nb10 alloy showed higher thermal stability in comparison with other samples. The crystallization activation energy of this amorphous alloy was estimated about 410 kJ mol?1 which was much higher than Fe40Cr20Si15B15Ni10 (195.5 kJ mol?1) and Fe40Cr20Si15B15Ni5Nb5 (360 kJ mol?1) samples. The calculated values of Avrami exponent (1.5 < n < 2.2) indicated that the crystallization process in different alloying systems is the same and to be governed by a three-dimensional diffusion-controlled growth.  相似文献   

15.
周琦  黎新宝  焦孙治 《无机化学学报》2021,37(11):1970-1980
利用快速凝固结合化学脱铝模板法制备前驱体纳米多孔Ni-Co合金,再经气相沉积硫和热氢还原制备纳米多孔Co9S8/Ni3S2复合电极材料。研究表明,通过气相沉积,硫原子与Ni-Co合金原位生成CoS2/NiS2复合相,再经过热氢还原后,形成硫原子比例较低的Co9S8/Ni3S2复合相。该热氢还原过程不仅提高了Co9S8/Ni3S2各元素周围的电子密度,而且在其表面调制出有介孔结构的异质界面,进而提高其电子传输能力并增大活性比表面积。相比于其他同条件下制备的Ni、Co硫化物,Co9S8/Ni3S2拥有更佳的析氢反应(HER)活性,在50 mA·cm-2的电流密度下,Co9S8/Ni3S2的HER过电位为234 mV,Tafel斜率为106 mV·dec-1,经稳定性测试后,电压变化仅为14 mV。  相似文献   

16.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24 Mn0.1Ni0.33合金的放电容量, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1.B的添加不同程度地降低了合金的高倍率放电性能, 使合金电极表面上电化学反应的电荷转移电阻(Rct)显着增加, 交换电流密度(I0)显着降低。添加B可显着改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1.  相似文献   

17.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的放电容量,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1。B的添加不同程度地降低了合金的高倍率放电性能,使合金电极表面上电化学反应的电荷转移电阻(R ct)显著增加,交换电流密度(I0)显著降低。添加B可显著改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能,Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1。  相似文献   

18.
In this work three alloys, Fe74Nb6B20, Fe64Ni10Nb6B20 and Fe54Ni20Nb6B20, were obtained by mechanical alloying to analyze the influence of Ni content on Fe–Nb–B alloy formation. Structural analysis by X-ray diffraction (XRD) confirms that partial substitution of Fe by Ni favours the formation during milling of a more disordered structure. Furthermore, thermal stability study was performed by differential scanning calorimetry (DSC) because thermally induced structural changes can affect soft magnetic behaviour. After 40 h of milling time, all DSC curves show several exothermic effects on heating associated to structural relaxation and crystallization. All alloys present a crystallization process with associated activation energy values ranged between 238 and 265 kJ mol–1 related to the crystalline growth of the bcc-Fe rich phase. In alloys with Ni, a second crystallization process appears at temperatures over 500°C with activation energies 397 (10% Ni alloy) and 385 kJ mol–1 (20% Ni alloy) probably associated to the nucleation and crystalline growth of a new phase.  相似文献   

19.
NiB和NiP超细非晶合金的退火晶化行为及催化性能   总被引:9,自引:0,他引:9  
 采用X射线吸收精细结构(XAFS),X射线衍射(XRD)和差热分析(DTA)等方法研究了以化学还原法制备的NiB和NiP超细非晶态合金催化剂在退火过程中的结构变化.XRD结果表明,在300℃下退火时,NiB超细非晶态合金晶化生成纳米晶Ni3B亚稳物相,NiP超细非晶态合金则主要晶化生成金属Ni和部分晶态Ni3P的混合物相;在500℃退火且近于完全晶化的条件下,大部分超细非晶态合金都晶化为金属Ni.XAFS结果定量地说明,对于NiB和NiP初始样品,第一近邻Ni-Ni配位的平均键长Rj分别为0.274和0.271nm,其结构无序度σS很大,分别为0.033和0.028nm,其热无序度σT分别为0.0069和0.0060nm.300℃退火后,晶化生成的Ni3B的Ni-Ni配位的σS降低到初始样品的33%,仅为0.011nm.500℃退火后,NiB样品的结构参数与金属Ni基本一致,但NiP样品的Ni-Ni配位的σS还远大于σT,仍为0.0125nm,表明NiB和NiP超细非晶态合金的退火晶化行为有很大的差别.纳米晶Ni3B催化苯加氢反应的转化率比超细Ni-B非晶态合金或多晶金属Ni更高,表明纳米晶Ni3B中的Ni与B原子组成了苯加氢催化反应的活性中心.  相似文献   

20.
Ti-based amorphous alloys produced by ultra-rapid melt cooling represent an excellent option as biomaterials because of their mechanical properties and corrosion resistance. However, complete elimination of toxic elements is affecting the glass-forming ability and amorphous structure could be obtained only for thin ribbons or powders that are subsequently processed by powder metallurgy. Amorphous ribbons of special Ti42Zr40Ta3Si15 alloy, which is completely free of any toxic element, were produced by melt spinning, and the thermostability of resulting material was investigated in order to estimate its ability for further heat processing. Isochronal differential scanning calorimetry (DSC) was used to determine transformation points such as glass transition temperature T g or crystallization temperature T x. The activation energy for crystallization of amorphous phase was calculated based on Kissinger method, using heating rates ranging between 5 and 20 °C min?1. Amorphous structure of resulting ribbon was evidenced by means of X-rays diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). It was determined that amorphous Ti42Zr40Ta3Si15 alloy has a high activation energy for crystallization, similar to other Ti-based amorphous alloys, which provides good thermal stability for subsequent processing, especially by means of powder metallurgy techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号