首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhaustion of supersonic argon and nitrogen jets through sonic and supersonic nozzles into a rarefied submerged space at high stagnation pressures is studied experimentally. The shapes and lengths of the jets are visualized by means of detecting radiation excited in the considered flow by an electron beam. Dependences of the geometric parameters of the jets on exhaustion and clusterization conditions at low Reynolds numbers based on the reference length of the jet are obtained. It is found that the coefficient of proportionality between the length of the first “barrel” of the supersonic jet and the degree of jet expansion increases with an increase in the stagnation pressure. Empirical dependences of the proportionality coefficient on the size of clusters formed in supersonic flows are derived for the first time.  相似文献   

2.
Detailed near-field structures of highly underexpanded sonic free jets have been investigated with the help of computational fluid dynamics. Two-dimensional, axisymmetric Euler equations have been chosen to predict the underexpanded jets, and the third-order total variation diminishing finite-difference scheme has been applied to solve the system of governing equations numerically. Several different nozzles have been employed to investigate the influence of the nozzle geometry on the near-field structures of highly underexpanded sonic free jets. The results obtained show that the distance from the nozzle exit to the Mach disk is an increasing function of the jet–pressure ratio, which also significantly influences the shape of the jet boundary. The diameter of the Mach disk increases with the jet–pressure ratio, and it is further significantly influenced by the nozzle geometry, unlike the distance of the Mach disk from the nozzle exit. However, such a dependence on the nozzle geometry is no longer found when an effective-diameter concept is taken into account for the flow from a sharp-edged orifice. A good correlation in the diameters of the Mach disk is obtained, so that the near-field structure of highly underexpanded sonic free jets is a unique function of the pressure ratio, regardless of the nozzle geometry.  相似文献   

3.
A finite difference method is proposed for solving the simplified Navier-Stokes equations for the case of a supersonic laminar off-design jet issuing into a parallel supersonic stream. Calculations are made of underexpanded and overexpanded jets for various Reynolds numbers.  相似文献   

4.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

5.
A numerical method of calculating a three-dimensional laminar supersonic underexpanded jet escaping into an accompanying supersonic flow is developed. The simplified Navier-Stokes equations for a steady-state three-dimensional flow are employed. Numerical calculations are carried out for several cases relating the outflow of jets from a four-nozzle assembly into an accompanying supersonic flow, and a number of the characteristics of three-dimensional flows of this kind are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 88–93, November–December, 1972.  相似文献   

6.
The propagation of an underexpanded sonic jet over a flat end face has been experimentally investigated. As distinct from previous studies, the object of investigation is not a free jet, but a jet flowing from a nozzle along a horizontal surface. The total separation of the jet from the surface and its attachment to the end wall are related to the propagation characteristics of underexpanded wall jets. The effect of the total pressure in the jet and the height of the step on the separation of the jet and its attachment to the wall and, moreover, on the principal characteristics of the flow — the pressure in the base region, the extent of the circulation zone, the jet trajectory — is examined. The associated hysteresis effects are studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 61–66, July–August, 1991.  相似文献   

7.
水下欠膨胀高速气体射流的实验研究   总被引:14,自引:0,他引:14  
戚隆溪  曹勇  王柏懿 《力学学报》2000,32(6):667-675
采用实验途径研究了下水高速气体射流的动力学特性,研制了水下高速气体射流实验系统并发展了相应的测试手段。实验中,用插入式静压探针测量了射流轴线静压分布;用γ射线衰减法测量了径向空隙率分布,从而揭示了水下高速气体射流均压和掺混两个过程的基本规律。测量结果表明:水下高速气体射流在欠膨胀工况下运行时,近场将出现含有复杂波系结构的膨胀压缩区域,由于气水的掺混作用,水下欠膨胀气体射流均压化过程比空气中衰减得快。测量结果还表明,水下射流在近场区的混合层由气水两相占据,其流态从靠近气体侧的液滴流型过渡到靠近液体侧的气泡流型。  相似文献   

8.
We present the results of an experimental investigation and numerical simulation of the gasdynamic structure of underexpanded dissociated-air jets and the heat transfer in these strongly nonequilibrium flows under the test conditions realized in the 100-kW electrodeless VGU-4 plasma generator of the Institute for Problems in Mechanics of the Russian Academy of Sciences (IPM RAS). The flow and heat transfer analysis is carried out on the basis of measurements of the static pressure in the plenum chamber, at the sonic nozzle exit, and on the low-pressure chamber wall, the stagnation pressure on the jet axis using a Pitot tube, and the heat transfer at the stagnation points of water-cooled models placed along the jet axis. The numerical simulation, based on complete Navier-Stokes equations, includes the calculation of (1) equilibrium air plasma flows in the discharge channel of the VGU-4 plasma generator; (2) underexpanded nonequilibrium dissociated-air jet outflow into the ambient space; and (3) axisymmetric jet flow past cylindrical models.  相似文献   

9.
The results of the experimental investigation of supersonic turbulent jets with local subsonic zones of forward and reverse flow exhausting into the ambient atmosphere or an outer stream, either parallel or transverse to the jet, are presented. Some gasdynamic features of the flows containing these zones, which have not been adequately addressed in the literature, are analyzed. Thus, supersonic flows with back pressure, e.g., highly overexpanded and underexpanded jet flows, and those upstream and downstream of a jet on the leeward side of a cone in a supersonic gas stream, are studied. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 143–150, January–February, 1998.  相似文献   

10.
11.
We present experimental results on penetration of round sonic and supersonic jets normal to a supersonic cross flow. It is found that penetration is strongly dependent on momentum ratio, weakly dependent on free-stream Mach number, and practically independent of jet Mach number, pressure ratio, and density ratio. The overall scaling of penetration is not very different from that established for subsonic jets. The flow is very unsteady, with propagating pressure waves seen emanating from the orifice of helium jets.  相似文献   

12.
Numerical investigations were made of the propagation, in a supersonic wake, of uncalculated jets, flowing out of nozzles of square and rectangular cross section, and of lumped jets, made up of from two to nine individual jets; the special characteristics of their flow were investigated in the initial, transitional, and main sections. Specifically, for lumped jets, the possibility of replacing them by a single axisymmetric jet, equivalent in mass-flow rate, is discussed. To calculate a three-dimensional unexpanded supersonic jet, flowing out into a wake, in [1] it was proposed to use a numerical method for solving a simplified system of Navier-Stokes equations for steady-state flow, and numerical investigations were made of the three-dimensional interaction of four jets in a supersonic wake, at small distances from the outlet cross section of the nozzle, i.e., mainly in the initial sections of the jets, where the mixing layers along the boundaries of the jets are still not closed. Here the method of [1] is used to study the special characteristics of three-dimensional viscous jets at large distances from the outlet cross section of the nozzle in the region of the main section, where the mixing layers have come together and a single three-dimensional jet has been formed. The system of equations, the boundary conditions, the numerical method, the system of coordinates, and the nomenclature used are the same as in [1].  相似文献   

13.
In the present study, the characteristics of supersonic rectangular microjets are investigated experimentally using molecular tagging velocimetry. The jets are discharged from a convergent–divergent rectangular nozzle whose exit height is 500 μm. The jet Mach number is set to 2.0 for all tested jets, and the Reynolds number Re is altered from 154 to 5,560 by changing the stagnation pressure. The experimental results reveal that jet velocity decays principally due to abrupt jet spreading caused by jet instability for relatively high Reynolds numbers (Re > ~450). The results also reveal that the jet rapidly decelerates to a subsonic speed near the nozzle exit for a low Reynolds number (Re = 154), although the jet does not spread abruptly; i.e., a transition in velocity decay processes occurs as the Reynolds number decreases. A supersonic core length is estimated from the streamwise distribution of the centerline velocity, and the length is then normalized by the nozzle exit height and plotted against the Reynolds number. As a result, it is found that the normalized supersonic core length attains a maximum value at a certain Reynolds number near which the transition in the velocity decay process occurs.  相似文献   

14.
The flow structure at the initial section of a supersonic underexpanded jet in the presence of a stationary artificial disturbance in the form of a single microjet is studied experimentally. The influence of gas-dynamic and geometric parameters of the microjet on the structure of the main supersonic flow and a significant effect of the microjet on the changes in the Pitot pressure in the shear layer of the supersonic jets are identified. Interaction between the microjet and the main jet flow generates disturbances of two types propagating in the main jet flow: a disturbance induced by the wake flow behind the microjet and a weaker disturbance in the form of a low-intensity shock wave (Mach wave type). __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 104–111, May–June, 2009.  相似文献   

15.
A numerical investigation is made of the interaction of an underexpanded jet of an inviscid and nonheat-conducting gas issuing from an axisymmetric conical nozzle with plane, cylindrical, and spherical surfaces. It is assumed that the flow turning angle for flow about a barrier is smaller than the critical angle, and subsonic regions are absent in the flow field studied. The effect of the characteristic parameters (Mach number at the nozzle exit, jet underexpansion) on the flow pattern and jet forces is analyzed. The results of numerical calculations are compared to the results of approximate theories and experimental data. A theoretical solution of the problem of the effect of a supersonic jet on a surface of given shape, even in the approximation of an inviscid, nonheat-conducting gas, is quite difficult. A reason for this is that the flow region contains shock waves interacting with each other, contact discontinuities, and zones of mixed sub-and supersonic flow. As far as is known to the authors, the results obtained for three-dimensional problems for the interaction of supersonic jets with each other or with barriers are primarily experimental (for example, [1–6]). A numerical analysis of the interaction of axisymmetric ideal-gas jets was carried out in [7–10]. In [7] a three-dimensional form of the method of characteristics was used to calculate the initial interaction region for two supersonic cylindrical jets (with Mach number M=10) intersecting at an angle of 60. The interaction of several jets has been considered in [8, 9], where the solution was obtained according to the Lax—Wendroff method without elimination of the discontinuity lines of flow parameters. In [10] the lateral interaction of axisymmetric supersonic jets with each other and with a plate is investigated by means of a straight-through calculationTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–8, November–December, 1974.The authors thank A. N. Kraiko for useful discussions of the results, and A. L. Isakov and É. N. Gasparyan for kindly providing the experimental data.  相似文献   

16.
We present an experimental study of a supersonic nozzle with supersonic iodine injection. This nozzle simulates Chemical Oxygen Iodine Laser (COIL) flow conditions with non-reacting, cold flows. During the experiments, we used a laser sheet near 565 nm to excite fluorescence in iodine, which we imaged with an intensified and gated CCD camera. We captured streamwise and semi-spanwise (oblique-view) images, with fluorescence revealing the material injected into the flow. We identified the flow structures in the images, and produced quantitative characterizations of the flow morphology and of the mixing between the primary and injected flow. We considered four injection scenarios. The first scenario includes a single injector positioned downstream of the nozzle throat. To enhance the mixing between the flows, trip jets are placed in the wake of the single jet. The sonic trip jets, significantly smaller than the primary supersonic iodine jet, are intended to destabilize the counter-rotating vortex pair (CRVP) of the primary jet. We compare three different trip jet configurations for their ability to enhance mixing between the oxygen and iodine flows.  相似文献   

17.
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 31 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.  相似文献   

18.
The effect of the flow character in the plenum chamber of a nozzle on the high-frequency boundary of the spectrum of fluctuations at the boundary of a supersonic, strongly underexpanded jet of nitrogen exhausted from a circular sonic nozzle into the ambient space was experimentally studied. The Reynolds number in the plenum chamber of the nozzle with a given throat area was varied by changing the diameter of the subsonic region. The high-frequency boundary of the spectrum of turbulent fluctuations was evaluated on the basis of two-point correlation functions of time. The technique for measurement of these functions was based on molecular scattering of light. Radiation of two pulse lasers with a controlled delay between the pulses was used as a source of light. It follows from experimental results that the high-frequency boundary of the spectrum of turbulent fluctuations and the spectrum itself vary significantly depending on the Reynolds number of the flow in the plenum chamber. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 69–72, November–December, 1999.  相似文献   

19.
Effect of an annular co-flow jet on the center jet at subsonic, correctly expanded and underexpanded sonic conditions was studied experimentally. It is found that the co-flow retards the mixing of the primary jet, leading to potential core elongation. The characteristic decay of the jet is also retarded in the presence of co-flow. With co-flow core length elongation of 40% and 80% were achieved for correctly expanded and underexpanded (NPR 7) sonic jets, respectively. Shadowgraph pictures show that the co-flow is effective in preserving the shock-cell structures of the inner jet, making the jet to propagate to a greater axial distance which otherwise would have decayed faster.  相似文献   

20.
The structure of a supersonic underexpanded lowpressureratio jet exhausted from a nozzle with variable geometry of the entrance section is experimentally studied. Total pressure distributions in the initial cross sections of the examined jets are obtained. Based on these distributions, the coordinates of the mixingregion boundaries are found. The curvature of streamlines in the mixing layer within the first two barrels of an underexpanded jet is determined. A dependence generalizing the measurement results on the curvature of streamlines in the first barrel of a weakly underexpanded jet is obtained in dimensionless coordinates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号